Log in

Reference conditions and WFD compliant class boundaries for phytoplankton biomass and chlorophyll-a in Alpine lakes

  • EUROPEAN SURFACE WATERS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The intercalibration (IC) exercise is a key element in the implementation of the Water Framework Directive (WFD) in Europe. Its focus lies on the harmonization of national classification methods to guarantee a common understanding of ‘Good Ecological Status’ in surface waters. This article defines reference conditions and sets class boundaries for deep (mean depth >15 m, IC lake type L-AL3) and moderately deep (mean depth 3–15 m, IC lake type L-AL4) Alpine lakes >0.5 km2. Data were collated from each of the five EU member states included in the Alpine Geographical Intercalibration Group (Alpine GIG: Austria, France, Germany, Italy and Slovenia). Hydro-morphological, chemical and biological data from 161 sites (sampling stations) in 144 Alpine lakes over a period of seven decades were collated in a database. Based on a set of reference criteria, 18 L-AL3 and 13 L-AL4 reference sites were selected. Reference conditions were defined using a combined approach, based on historical, paleolimnological and monitoring data in conjunction with trophic modelling and expert judgement. Reference values and class boundaries were set for annual mean total biomass (biovolume), and then derived for annual mean chlorophyll-a using a regression between the two parameters. In order to allow for geographical differences within the Alpine GIG and to facilitate the inclusion of the broadly defined common IC types and national lake types, ranges were defined for each reference value. Range of reference values are 0.2–0.3 mg l−1 (L-AL3) and 0.5–0.7 mg l−1 (L-AL4) for total biovolume and 1.5–1.9 μg l−1 (L-AL3) and 2.7–3.3 μg l−1 (L-AL4) for chlorophyll-a. Depending on lake type and variable, the ecological quality ratios (EQR) for setting the class boundaries lie between 0.60 and 0.75 for the high/good class boundary and between 0.25 and 0.41 for the good/moderate class boundary. The response of sensitive phytoplankton taxa along a nutrient gradient and the occurrence of ‘undesirable conditions and secondary effects’ as defined in the WFD was used to validate the class boundary values, which are thus considered to be compliant with the requirements of the WFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alefs, J., J. Müller & B. Lenhart, 1996. Die jährliche Änderung der Diatomeenvergesellschaftung seit 1958 in einem warvendatierten Sedimentkern aus dem Ammersee (Oberbayern). Limnologica 26: 39–48.

    Google Scholar 

  • Amann, H., 1918. Die Geschichte einer Wasserblüte. Archiv für Hydrobiologie 11: 496–501.

    Google Scholar 

  • Anneville, O. & J. P. Pelletier, 2000. Recovery of Lake Geneva from eutrophication: quantitative response of phytoplankton. Archiv für Hydrobiologie 148: 607–624.

    CAS  Google Scholar 

  • BMGU & BMWF, 1983. Ergebnisse des österreichischen Eutrophieprogrammes 1978–1982. Bundesministerium für Gesundheit und Umweltschutz, Bundesministerium für Wissenschaft und Forschung, Wien: 106 pp.

  • Brutschy, A. & A. Güntert, 1923. Gutachten über den Rückgang des Fischbestandes im Hallwilersee. Archiv für Hydrobiologie 14: 523–571.

    Google Scholar 

  • Buraschi, E., F. Salerno, C. Monguzzi, G. Barbiero & G. Tartari, 2005. Characterization of the Italian lake-types and identification of their reference sites using anthropogenic pressure factors. Journal of Limnology 64: 75–84.

    Google Scholar 

  • Cardoso, A. C., A. Solimini, G. Premazzi, L. Carvalho, A. Lyche Solheim & S. Rekolainen, 2007. Phosphorus reference concentrations in European lakes. Hydrobiologia 584: 3–12.

    Article  CAS  Google Scholar 

  • Carvalho, L., A. Solimini, G. Phillips, M. van den Berg, O.-P. Pietiläinen, A. Lyche Solheim, S. Poikane & U. Mischke, 2008. Chlorophyll reference conditions for European lake types used for intercalibration of ecological status. Aquatic Ecology 45: 203–211.

    Article  CAS  Google Scholar 

  • CEN, 2007. Phytoplankton biovolume determination using inverted microscopy (Utermöhl technique). CEN TC 230/WG 2/TG 3 (2007). Draft proposal 2006, Brussels.

  • CIS, 2003a. Towards a guidance on establishment of the intercalibration network and the process on the intercalibration exercise. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance document 6. Working Group 2.4—Intercalibration, European Commission: 47 pp. http://circa.europa.eu.

  • CIS, 2003b. River and lakes—typology, reference conditions and classification systems. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance document 10, Working Group 2.3—REFCOND, European Commission: 86 pp. http://circa.europa.eu.

  • Danielopol, D., R. Schmidt & E. Schultze (eds), 1985. Contributions to the paleolimnology of the Trumer Lakes (Salzburg), and the Lakes Mondsee, Attersee and Traunsee (Upper Austria). Limnologisches Institut der Österreichischen Akademie der Wissenschaften, Wien.

  • Deufel, J., 1978. Veränderungen der Schilf- und Wasserpflanzenbestände im Bodensee während der Eutrophierung und ihre Auswirkungen auf die Fische. Arbeiten des Deutschen Fischerei-Verbandes 25: 30–34.

    Google Scholar 

  • Directive, 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L 327: 1–72.

  • Dokulil, M.T., A. Hamm & J.-G. Kohl (eds), 2001. Ökologie und Schutz von Seen. UTB, Facultas-Universitäts-Verlag, Wien.

  • Dokulil, M. T. & K. Teubner, 2006. Bewertung der Phytoplanktonstruktur stehender Gewässer gemäß der EU-Wasserrahmenrichtlinie: Der modifizierte Brettum-Index. Deutsche Gesellschaft für Limnologie (DGL), Tagungsbericht 2005 (Karlsruhe), Werder 2006: 356–360.

  • EN, 2006. Water quality—guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique). EN 15204 (2006).

  • EU Commission, 2008. Decision of 30 October 2008 establishing, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise. Official Journal of the European Union L 332/20 10.12.2008, Brussels.

  • Feuillade, M., J. Dominik, J.-C. Druart & J.-L. Loizeau, 1995. Trophic status evolution of Lake Nantua as revealed by biological records in sediment. Archiv für Hydrobiologie 132: 337–362.

    Google Scholar 

  • Findenegg, I., 1935. Limnologische Untersuchungen im Kärntner Seengebiet. Internationale Revue der gesamten Hydrobiologie Hydrographie 32: 408–415.

    Google Scholar 

  • Findenegg, I., 1954. Versuch einer soziologischen Gliederung der Kärntner Seen nach ihrem Phytoplankton. Angewandte Pflanzensoziologie, Festschrift Aichinger 1: 299–309.

  • Forel, F.-A., 1892–1902. Lac Léman. Monographie Limnologique. Lausanne.

  • Frey, D. G., 1955. Längsee: a history of meromixis. Memorie dell’Istituto Italiano di Idrobiologia, Suppl. 8: 141–164.

  • Fricker, H. (ed.), 1980. OECD eutrophication programme regional project Alpine lakes. Swiss Federal Board for Environmental Protection (Bundesamt für Umweltschutz), Bern: 234 pp.

  • Gassner, H., D. Zick, J. Wanzenböck, B. Lahnsteiner & G. Tischler, 2003. Die Fischartengemeinschaften der großen österreichischen Seen. Schriftenreihe des BAW 18: 1–83.

    Google Scholar 

  • Guilizzoni, P. & A. Lami, 1992. Historical records of changes in the chemistry and biology of Italian lakes. In Guilizzoni, P., G. Tartari, G. Giussani (eds), Limnology in Italy, Vol. 50. Memorie dell’Istituto Italiano di Idrobiologia: 61–77.

  • Guilizzoni, P., G. Bonomi, G. Galanti & D. Ruggiu, 1982. Basic trophic status and recent development of some Italian lakes as revealed by plant pigments and other chemical components in sediment cores. Memorie dell’Istituto Italiano di Idrobiologia 40: 79–98.

    CAS  Google Scholar 

  • Halbfaß, W., 1923. Grundzüge einer vergleichenden Seenkunde. Verlag der Gebrüder Borntraeger, Berlin.

    Google Scholar 

  • Hartmann, J. & H. Quoss, 1993. Fecundity of whitefish (Coregonus lavaretus) during the eutrophication and oligotrophication of Lake Constance. Journal of Fish Biology 43: 81–87.

    Google Scholar 

  • Higgitt, S. R., F. Oldfield & P. G. Appleby, 1991. The record of land use change and soil erosion in the late Holocene sediments of the Petit Lac d’Annecy, eastern France. The Holocene 1: 14–28.

    Article  Google Scholar 

  • Hofmann, G. & J. Schaumburg, 2005. Seesedimente in Bayern: Waginger-Tachinger See, Diatomeenflora in Sedimentkernen August 2002. Bayerisches Landesamt für Wasserwirtschaft, Materialien 121: 1–76.

    Google Scholar 

  • IGKB, 2004a. Der Bodensee, Zustand – Fakten – Perspektiven. Bilanz 2004. IGKB, Bregenz.

  • IGKB, 2004b. Aktionsprogramm Bodensee 2004 bis 2009. Schwerpunkt Ufer- und Flachwasserzone. IGKB, Bregenz.

  • ISO, 1985. Bestimmung des Chlorophyll-a-Gehaltes von Oberflächenwasser. ISO 38412-16:1985.DIN.

  • Kaiblinger C., O. Anneville, R. Tadonleke, F. Rimet, J. C. Druart, J. Guillard & M. T. Dokulil, submitted. Central-European Water Quality indices applied to long-term data from peri-alpine lakes: test and possible improvements. Hydrobiologia.

  • KIS, 2008. Kärntner Seenbericht 2008. Kärntner Institut für Seenforschung. www.kis.ktn.gv.at/seenbericht.htm.

  • Klee, R. & R. Schmidt, 1987. Eutrophication of Mondsee (Upper Austria) as indicated by the diatom stratigraphy of a sediment core. Diatom Research 2: 55–76.

    Google Scholar 

  • Klee, R., R. Schmidt & J. Müller, 1993. Alleröd diatom assemblages in prealpine hardwater lakes of Bavaria and Austria as preserved by the Laacher See eruption event. Limnologica 23: 131–143.

    Google Scholar 

  • Lachavanne, J.-B., 1979. Les macrophytes du lac de Morat. Berichte der Schweizerischen Botanischen Gesellschaft 89: 114–132.

    Google Scholar 

  • LAWA, 1999. Gewässerbewertung—stehende Gewässer. Vorläufige Richtlinie für eine Erstbewertung von natürlich entstandenen Seen nach trophischen Kriterien 1998. Länderarbeitsgemeinschaft Wasser, Kulturbuch-Verlag Berlin GmbH, Berlin.

  • Löffler, H., 1978. The paleolimnology of some Carinthian lakes with special reference to Wörthersee. Polish Archives of Hydrobiology 25: 227–232.

    Google Scholar 

  • Loizeau, J.-L., D. Span, V. Coppee & J. Dominik, 2001. Evolution of the trophic state of Lake Annecy (eastern France) since the last glaciation as indicated by iron, manganese, and phosphorus speciation. Journal of Paleolimnology 25: 205–214.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • Lotter, A. F., 2001. The palaeolimnology of Soppensee (Central Switzerland), as evidenced by diatom, pollen and fossil-pigment analysis. Journal of Paleolimnology 25: 65–79.

    Article  Google Scholar 

  • Lyche Solheim, A., S. Rekolainen, S. J. Moe, L. Carvalho, G. Phillips, R. Ptacnik, W. E. Penning, L. G. Tóth, C. O’Toole, A.-K. L. Schartau & T. Hesthagen, 2008. Ecological threshold responses in European lakes and their applicability for the Water Framework Directive (WFD) implementation: synthesis of lakes results from the REBECCA project. Aquatic Ecology 42: 317–334.

    Article  CAS  Google Scholar 

  • Marchetto, A. & R. Bettinetti, 1995. Reconstruction of the phosphorus history of two deep, subalpine Italian lakes from sedimentary diatoms, compared with long-term chemical measurements. Memorie dell’Istituto Italiano di Idrobiologia 53: 27–38.

    Google Scholar 

  • Marchetto, A. & S. Musazzi, 2001. Comparison between sedimentary and living diatoms in Lago Maggiore (N. Italy): implications of using transfer functions. Journal of Limnology 60: 19–26.

    Google Scholar 

  • Melzer, A., C. Scholze, F.-M. Goos & S. Zimmermann, 2003. Seelitorale in Bayern, Chiemsee. Makrophyten-Kartierungen 1985 und Bayer. Landesamt für Wasserwirtschaft Materialien 108: 83 pp.

    Google Scholar 

  • Nixdorf, B., U. Mischke, E. Hoehn & U. Riedmüller, 2005. Bewertung von Seen anhand des Phytoplanktons. Limnologie aktuell 11: 105–120.

    Google Scholar 

  • OECD, 1982. Eutrophication of waters—monitoring, assessment and control. Organization for Economic Cooperation and Development, Paris: 154.

    Google Scholar 

  • Premazzi, G., A. Dalmiglio, A. C. Cardoso & G. Chiaudani, 2003. Lake management in Italy: the implications of the Water Framework Directive. Lakes and Reservoirs: Research and Management 8: 41–59.

    Article  Google Scholar 

  • Ruttner, F., 1937. Ökotypen mit verschiedener Vertikalverteilung im Plankton der Alpenseen. Internationale Revue der gesamten Hydrobiologie 35: 7–34.

    Article  Google Scholar 

  • Schaumburg, J., 1996. Seen in Bayern—Limnologische Entwicklung von 1980 bis 1994. Informationsberichte Bayerisches Landesamt für Wasserwirtschaft 1/96: 216 pp.

  • Schaumburg, J., M. Colling, I. Schlößer, B. Köpf & F. Fischer, 2005. Ökologische Typisierung des Phytoplanktons. Informationsbericht des Bayerischen Landesamtes für Wasserwirtschaft 3/05: 61 pp.

  • Schmidt, R., 1989. Diatomeenstratigraphische Untersuchungen zur Trophieänderung und Industrieschlammakkumulation im Traunsee/Österreich. Aquatic Sciences 51: 317–337.

    Article  Google Scholar 

  • Schmidt, R., R. Psenner, J. Müller, P. Indinger & C. Kamenik, 2002. Impact of late glacial climate variations on stratification and trophic state of the meromictic lake Längsee (Austria): validation of a conceptual model by multi proxy studies. Journal of Limnology 61: 49–60.

    Google Scholar 

  • Schroeder, R., 1979. Decline of reed swamps in Lake Constance. Symposium Biologica Hungarica 19: 43–48.

    Google Scholar 

  • Schulz, L., R. Fresner, M. Reichmann, G. Santner, M. Mairitsch, M. Ambros, W. Honsig-Erlenburg, G. Weissel, B. Hummitzsch & J. Petutschnig, 2005. Der Millstätter See—limnologische Langzeitentwicklung 1970–2002. Veröffentlichungen des Kärntner Institutes für Seenforschung, Klagenfurt.

  • Stadelmann, P., 1984. Die Zustandsentwicklung des Baldeggersees (1900 bis 1980) und die Auswirkung von seeinternen Maßnahmen. Wasser, Energie, Luft 76: 85–95.

  • U.S. EPA, 2000a. Ambient water quality criteria recommendations. Information supporting the development of state and tribal nutrient criteria. Lakes and reservoirs in nutrient ecoregion II. Office of Water, Environmental Protection Agency 822-B-00-007.

  • U.S. EPA, 2000b. Ambient water quality criteria recommendations. Information supporting the development of state and tribal nutrient criteria. Lakes and reservoirs in nutrient ecoregion VIII. Office of Water, Environmental Protection Agency 822-B-00-010.

  • U.S. EPA, 2000c. Ambient water quality criteria recommendations. Information supporting the development of state and tribal nutrient criteria. Lakes and reservoirs in nutrient ecoregion XI. Office of Water, Environmental Protection Agency 822-B-00-012.

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der internationalen Vereinigung für theoretische und angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vighi, M. & G. Chiaudani, 1985. A simple method to estimate lake phosphorus concentrations resulting from natural background loading. Water Research 10: 987–991.

    Article  Google Scholar 

  • Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Istituto Italiano di Idrobiologia 33: 53–69.

    CAS  Google Scholar 

  • Vollenweider, R. A. & K. Kerekes, 1980. The loading concept as a basis for controlling eutrophication philosophy and preliminary results of the OECD programme on eutrophication. Progress in Water Technology 12: 5–38.

    CAS  Google Scholar 

  • Wolfram, G. & M. T. Dokulil, 2008. Leitfaden zur Erhebung der Biologischen Qualitätselemente, Seen. Teil B2-01d—phytoplankton. Handbuch des BMLFUW & des BAW, Wien: 48 pp. (http://wasser.lebensministerium.at/article/articleview/52972/1/5659/).

  • Wunsam, S., R. Schmidt & R. Klee, 1995. Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquatic Sciences 57: 360–386.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the data owners and providers of chemical and biological data (Gisela Ofenböck and Veronika Koller-Kreimel/BMLFUW, Peter Schaber/Amt der Salzburger Landesregierung, Ute Mischke/IGB, Hubert Gassner/BAW Scharfling, IGKB) for their cooperation in the establishment of the Alpine GIG phytoplankton intercalibration data set. Thanks to the JRC, especially to Sandra Poikane, for accompanying the Alpine GIG during the whole IC exercise, and to numerous experts from other GIGs for fruitful discussions and constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Wolfram.

Additional information

Guest editors: P. Nõges, W. van de Bund, A. C. Cardoso, A. Solimini & A.-S. Heiskanen

Assessment of the Ecological Status of European Surface Waters

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfram, G., Argillier, C., de Bortoli, J. et al. Reference conditions and WFD compliant class boundaries for phytoplankton biomass and chlorophyll-a in Alpine lakes. Hydrobiologia 633, 45–58 (2009). https://doi.org/10.1007/s10750-009-9875-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9875-9

Keywords

Navigation