Automated in Situ Water Quality Monitoring—Characterizing System Dynamics in Urban-Impacted and Natural Environments

  • Chapter
  • First Online:
Methodological Approaches in Physical Geography

Abstract

The application of in situ monitoring to characterize the dynamics of urban, peri-urban, and natural water environments from Southeast Asia, North America, and Australia is explored in this chapter. Focusing on water temperature, dissolved oxygen, turbidity, chlorophyll a, specific conductivity, and pH, important considerations in the deployment and maintenance of in situ monitoring systems is examined, followed by discussions of signature temporal trends (e.g. storm event versus dry weather, daily, seasonal) and specific spatial trends (e.g. land use impacts, water sensitive urban design (WSUD) performance, water column profiling). The value of in situ monitoring as a surrogate for other water quality parameters, such as nutrients, is explained; and finally, data analysis techniques are discussed, with a specific focus on deterministic modelling, geospatial modelling with GIS, and Artificial Intelligence (AI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamala S (2017) An overview of big data applications in water resources engineering. Mach Learn Res 2(1):10–18

    Google Scholar 

  • Ascui F, Haward M, Lovell H (2018) Salmon, sensors, and translation: the agency of big data in environmental governance. Environ Plan D: Soc Space 36(5):905–925

    Article  Google Scholar 

  • Beaton AD, Cardwell CL, Thomas RS, Sieben VJ, Legiret FE, Waugh EM, ... Morgan H (2012) Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters. Environ Sci Technol 46(17):9548–9556

    Google Scholar 

  • Bibri SE (2018) The IoT for smart sustainable cities of the future: an analytical framework for sensor-based big data applications for environmental sustainability. Sustain Cities Soc 38:230–253

    Article  Google Scholar 

  • Boss E, Haëntjens N, Westberry TK, Karp-Boss L, Slade WH (2018) Validation of the particle size distribution obtained with the laser in-situ scattering and transmission (LISST) meter in flow-through mode. Opt Express 26(9):11125–11136

    Article  Google Scholar 

  • Bourgeois W, Romain AC, Nicolas J, Stuetz RM (2003) The use of sensor arrays for environmental monitoring: interests and limitations. J Environ Monit 5(6):852–860

    Article  Google Scholar 

  • Carey RO, Wollheim WM, Mulukutla GK, Mineau MM (2014) Characterizing storm-event nitrate fluxes in a fifth order suburbanizing watershed using in situ sensors. Environ Sci Technol 48(14):7756–7765

    Article  Google Scholar 

  • Chaffin JD, Kane DD, Stanislawczyk K, Parker EM (2018) Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements. Environ Sci Pollut Res 25(25):25175–25189

    Article  Google Scholar 

  • Chen Y, Han D (2018) Water quality monitoring in smart city: a pilot project. Autom Constr 89:307–316

    Article  Google Scholar 

  • Davies-Colley RJ, Smith DG (2001) Turbidity suspended sediment, and water clarity: a review. JAWRA J Am Water Resour Assoc 37(5):1085–1101

    Article  Google Scholar 

  • Deng W, Wang G (2017) A novel water quality data analysis framework based on time-series data mining. J Environ Manag. https://doi.org/10.1016/j.jenvman.2017.03.024

    Article  Google Scholar 

  • Dodds WK, Higgs SA, Spangler MJ, Guinnip J, Scott JD, Hedden SC, ... Evans-White MA (2018) Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network. Hydrobiologia 813(1):85–102

    Google Scholar 

  • Effler SW, O’Donnell DM (2001) Resolution of spatial patterns in three reservoirs with rapid profiling instrumentation. Hydrobiologia 450(1–3):197–208

    Article  Google Scholar 

  • Effler SW, O'Donnell DM, Matthews DA, Perkins M, O'Donnell SM, Gelda RK, ... Mayfield JD (2008) Insights for the structure of a reservoir turbidity model from monitoring and process studies. Lake Reserv Manag 24(1):69–86

    Google Scholar 

  • Fletcher TD, Shuster W, Hunt WF, Ashley R, Butler D, Arthur S, ... Mikkelsen PS (2015) SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban Water J 12(7):525–542

    Google Scholar 

  • Glasgow HB, Burkholder JM, Reed RE, Lewitus AJ, Kleinman JE (2004) Real-time remote monitoring of water quality: a review of current applications, and advancements in sensor, telemetry, and computing technologies. J Exp Mar Biol Ecol 300(1–2):409–448

    Article  Google Scholar 

  • Gould JJ, Irvine KN, Perrelli MF, Reth K (2010) Exploring impacts of land use change on sediment erosion in the Cayuga Creek Watershed, Niagara Falls, New York, using BASINS SWAT. J Water Manag Model, R236–14. https://doi.org/10.14796/JWMM.R236-14, https://www.chijournal.org/R236-14

  • Gugino H, Irvine K, Ngern-klun R, Sukontason K, Sukontason K, Prangkio C, Thunyapar P (2006) Impacts of the urban environment on area water source: The Klong Mae Kha-Chiang Mai, Thailand. In: Poster presentation proceedings, the 4th international symposium on southeast Asian water environment, Asian Institute of Technology, Bangkok, pp 85–88

    Google Scholar 

  • Halliday SJ, Skeffington RA, Wade AJ, Bowes MJ, Gozzard E, Newman JR, ... Jarvie HP (2015) High‐frequency water quality monitoring in an urban catchment: hydrochemical dynamics, primary production and implications for the water framework directive. Hydrol Process 29(15):3388–3407

    Google Scholar 

  • Holtgrieve GW, Arias ME, Irvine KN, Lamberts D, Ward EJ, Kummu M, ... Richey JE (2013) Patterns of ecosystem metabolism in the Tonle Sap Lake, Cambodia with links to capture fisheries. PLoS One 8(8):e71395

    Google Scholar 

  • Irvine CA, Backus S, Cooke S, Dove A, Gewurtz SB (2019) Application of continuous turbidity sensors to supplement estimates of total phosphorus concentrations in the Grand River, Ontario Canada. J Great Lakes Res 45(4):840–849

    Article  Google Scholar 

  • Irvine KN (2013) Climate change and urban hydrology: Research needs in the developed and develo** worlds. J Water Manag Model R246–11. https://doi.org/10.14796/JWMM.R246-11, https://www.chijournal.org/R246-11

  • Irvine KN (2017) Teacher handbook of water quality for the Singapore geography curriculum. National Institute of Education, Singapore, 92 p, https://www.researchgate.net/publication/319819863_Teacher_Handbook_of_Water_Quality_for_the_Singapore_Geography_Curriculum.

  • Irvine KN, Murphy TP (2009) Assessment of eutrophication and phytoplankton community impairment in the Buffalo river area of concern. J Great Lakes Res 35(1):83–93

    Article  Google Scholar 

  • Irvine KN, Droppo IG, Murphy TP, Lawson A (1997) Sediment resuspension and dissolved oxygen levels associated with ship traffic: implications for habitat remediation. Water Qual Res J 32(2):421–438

    Article  Google Scholar 

  • Irvine KN, Somogye EL, Pettibone GW (2002) Turbidity, suspended solids, and bacteria relationships in the Buffalo river watershed. Middle States Geogr 35:42–51

    Google Scholar 

  • Irvine KN, Murphy TP, Tang T, Romano LM, Walters D (2003) Spatial and temporal trends in chlorophyll a nutrients and sediment in relation to avian mortality. Whitewater Lake, Manitoba, Canada. In: Sediment quality assessment and management: insight and progress, Ecovision World Monograph Series, Aquatic Ecosystem Health and Management Society, pp 271–86

    Google Scholar 

  • Irvine KN, Perrelli MF, McCorkhill G, Caruso J (2005a) Sampling and modeling approaches to assess water quality impacts of combined sewer overflows—The importance of a watershed perspective. J Great Lakes Res 31(1):105–115

    Article  Google Scholar 

  • Irvine KN, McCorkhill G, Caruso J (2005b) Continuous monitoring of conventional parameters to assess receiving water quality in support of combined sewer overflow abatement plans. Water Environ Res 77(5):543–552

    Article  Google Scholar 

  • Irvine KN, Richey JE, Holtgrieve GW, Sarkkula J, Sampson M (2011) Spatial and temporal variability of turbidity, dissolved oxygen, conductivity, temperature, and fluorescence in the lower Mekong River-Tonle Sap system identified using continuous monitoring. Int J River Basin Manag 9(2):151–168

    Article  Google Scholar 

  • Irvine K, Vermette S, Firuza BM (2013) The “black waters” of Malaysia: Tracking water quality from the peat swamp forest to the sea. Sains Malaysiana 42(11):1539–1548

    Google Scholar 

  • Irvine K, Chua L, Eikass HS (2014) The four national taps of Singapore: a holistic approach to water resources management from drainage to drinking water. J Water Manag Model C375:1–11

    Google Scholar 

  • Johnston MW, Williams JS (2006) Field comparison of optical and Clark cell dissolved oxygen sensors in the Tualatin River, Oregon, 2005. US Geological Survey

    Google Scholar 

  • Koko S, Irvine K, **dal R, Thongdara R (2017) Spatial and temporal variations of dissolved oxygen in cha-am municipality wastewater treatment ponds using GIS Kriging interpolation. J Water Manag Model 25:C427. https://doi.org/10.14796/JWMM.C427

  • Koponen J, Kummu M, Sarkkula J (2005) Modelling environmental change in Tonle Sap Lake, Cambodia. Int Ver Theor Angew Limnol: Verh 29(2):1083–1086

    Google Scholar 

  • Kuha J, Järvinen M, Salmi P, Karjalainen J (2019) Calibration of in situ chlorophyll fluorometers for organic matter. Hydrobiologia, 1–11

    Google Scholar 

  • Lannergård EE, Ledesma JLJ, Fölster J, Futter MN (2019) An evaluation of high frequency turbidity as a proxy for riverine total phosphorus concentrations. Sci Total Environ 651:103–113

    Article  Google Scholar 

  • Lashford C, Rubinato M, Cai Y, Hou J, Abolfathi S, Coupe S, ... Tait S (2019) SuDS & sponge cities: A comparative analysis of the implementation of pluvial flood management in the UK and China. Sustainability 11(1):213

    Google Scholar 

  • Lawrenz E, Richardson TL (2011) How does the species used for calibration affect chlorophyll a measurements by in situ fluorometry? Estuaries Coasts 34(4):872–883

    Article  Google Scholar 

  • Lewis J (1996) Turbidity-controlled suspended sediment sampling for runoff-event load estimation. Water Resour Res 32(7):2299–2310

    Article  Google Scholar 

  • Liss SN, Milligan TG, Droppo IG, Leppard GG (2005) Methods for analyzing floc properties. CRC Press, Boca Raton, Florida, pp 1–21

    Google Scholar 

  • Liu P, Wang J, Sangaiah AK, **e Y, Yin X (2019) Analysis and prediction of water quality using LSTM deep neural networks in IoT environment. Sustainability 11(7):2058

    Article  Google Scholar 

  • Lloyd CEM, Freer JE, Johnes PJ, Collins AL (2016) Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments. Sci Total Environ 543:388–404

    Article  Google Scholar 

  • McBride GB, Chapra SC (2005) Rapid calculation of oxygen in streams: approximate delta method. J Environ Eng 131:336–342

    Article  Google Scholar 

  • McGrane SJ, Hutchins MG, Miller JD, Bussi G, Kjeldsen TR, Loewenthal M (2017) During a winter of storms in a small UK catchment, hydrology and water quality responses follow a clear rural-urban gradient. J Hydrol 545:463–477

    Article  Google Scholar 

  • Minella JP, Merten GH, Reichert JM, Clarke RT (2008) Estimating suspended sediment concentrations from turbidity measurements and the calibration problem. Hydrol Process 22(12):1819–1830

    Article  Google Scholar 

  • Minaudo C, Dupas R, Gascuel‐Odoux C, Fovet O, Mellander PE, Jordan P, ... Moatar F (2017) Nonlinear empirical modeling to estimate phosphorus exports using continuous records of turbidity and discharge. Water Resour Res 53(9):7590–7606

    Google Scholar 

  • Miskewitz R, Uchrin C (2013) In-stream dissolved oxygen impacts and sediment oxygen demand resulting from combined sewer overflow discharges. J Environ Eng 139(10):1307–1313

    Article  Google Scholar 

  • Moraetis D, Efstathiou D, Stamati F, Tzoraki O, Nikolaidis NP, Schnoor JL, Vozinakis K (2010) High-frequency monitoring for the identification of hydrological and bio-geochemical processes in a mediterranean river basin. J Hydrol 389(1–2):127–136

    Article  Google Scholar 

  • Mulholland PJ, Houser JN, Maloney KO (2005) Stream diurnal dissolved oxygen profiles as indicators of in-stream metabolism and disturbance effects: fort Benning as a case study. Ecol Ind 5(3):243–252

    Article  Google Scholar 

  • Napieralski J, Fraser G (2010). Visualizing the Impact of Storm Events on the Quality of the Buffalo and Niagara Rivers (NY). Open Geogr J 3(1)

    Google Scholar 

  • Odum HT (1956) Primary production in flow waters. Limnol Oceanogr 1:102–117

    Article  Google Scholar 

  • Pellerin BA, Stauffer BA, Young DA, Sullivan DJ, Bricker SB, Walbridge MR, ... Shaw DM (2016) Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection. JAWRA J Am Water Resour Assoc 52(4):993–1008

    Google Scholar 

  • Pfannkuche J, Schmidt A (2003) Determination of suspended particulate matter concentration from turbidity measurements: particle size effects and calibration procedures. Hydrol Process 17(10):1951–1963

    Article  Google Scholar 

  • Price J, Chaosakul T, Surinkul N, Bowles J, Rattanakul S, Pradhan N, ... Nguyen TV (2011) Surface water quality and risk analysis in a peri-urban area, Thailand. In: Proceedings, 9th international symposium on southeast Asia water environment

    Google Scholar 

  • Riechel M, Matzinger A, Pawlowsky-Reusing E, Sonnenberg H, Uldack M, Heinzmann B, ... Rouault P (2016) Impacts of combined sewer overflows on a large urban river–Understanding the effect of different management strategies. Water Res 105:264–273

    Google Scholar 

  • Roesler C, Uitz J, Claustre H, Boss E, **ng X, Organelli E, ... d'Ortenzio F (2017) Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: a global analysis of WET Labs ECO sensors. Limnol Oceanogr: Methods 15(6):572–585

    Google Scholar 

  • Shamshirband S, Jafari Nodoushan E, Adolf JE, Abdul Manaf A, Mosavi A, Chau KW (2019) Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters. Eng Appl Comput Fluid Mech 13(1):91–101

    Google Scholar 

  • Sherson LR, Van Horn DJ, Gomez-Velez JD, Crossey LJ, Dahm CN (2015) Nutrient dynamics in an alpine headwater stream: use of continuous water quality sensors to examine responses to wildfire and precipitation events. Hydrol Process 29(14):3193–3207

    Article  Google Scholar 

  • Skarbøvik E, Roseth R (2015) Use of sensor data for turbidity, pH and conductivity as an alternative to conventional water quality monitoring in four Norwegian case studies. Acta Agric Scand B—Soil Plant Sci 65(1):63–73

    Google Scholar 

  • Song C, Dodds WK, Trentman MT, Rüegg J, Ballantyne F IV (2016) Methods of approximation influence aquatic ecosystem metabolism estimates. Limnol Oceanogr Methods 14(9):557–569

    Article  Google Scholar 

  • Stubblefield AP, Reuter JE, Dahlgren RA, Goldman CR (2007) Use of turbidometry to characterize suspended sediment and phosphorus fluxes in the Lake Tahoe basin, California, USA. Hydrol Process 21(3):281–291

    Article  Google Scholar 

  • Stutter M, Dawson JJ, Glendell M, Napier F, Potts JM, Sample J, ... Watson H (2017) Evaluating the use of in-situ turbidity measurements to quantify fluvial sediment and phosphorus concentrations and fluxes in agricultural streams. Sci Total Environ 607:391–402

    Google Scholar 

  • Sun H, Cornish PS, Daniell TM (2001) Turbidity-based erosion estimation in a catchment in South Australia. J Hydrol 253(1):227–238

    Article  Google Scholar 

  • Visoth T, Yim M, Vathna S, Irvine K, Koottatep T (2010) Efficiency of Phnom Penh’s natural wetlands in treating wastewater discharges. Asian J Water Environ Pollut 7(3):39–48

    Google Scholar 

  • Viswanathan VC, Molson J, Schirmer M (2015) Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland. Sci Total Environ 532:91–102

    Article  Google Scholar 

  • Wade AJ, Palmer-Felgate EJ, Halliday SJ, Skeffington RA, Loewenthal M, Jarvie HP, ... Joly E (2012) Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring. Hydrol Earth Syst Sci 16(11):4323–4342

    Google Scholar 

  • Wang J, Chua LH, Shanahan P (2017) Evaluation of pollutant removal efficiency of a bioretention basin and implications for stormwater management in tropical cities. Environ Sci: Water Res Technol 3(1):78–91

    Google Scholar 

  • Wymore AS, Leon MC, Shanley JB, McDowell WH (2019) Hysteretic response of solutes and turbidity at the event scale across forested tropical montane watersheds. Front Earth Sci 7:126

    Article  Google Scholar 

  • Yang PP, Chua LHC, Irvine KN, Nguyen MT, Low EW (2022) Impacts of a floating photovoltaic system on temperature and water quality in a shallow tropical reservoir. Limnology. https://doi.org/10.1007/s10201-022-00698-y

  • Yule CM, Gomez LN (2009) Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetlands Ecol Manag 17:231–241

    Article  Google Scholar 

  • Zolfaghari K, Wilkes G, Bird S, Ellis D, Pintar KDM, Gottschall N, ... Lapen DR (2020) Chlorophyll-a, dissolved organic carbon, turbidity and other variables of ecological importance in river basins in southern Ontario and British Columbia, Canada. Environ Monit Assess 192(1):1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim N. Irvine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Irvine, K.N., Chua, L.H.C., Irvine, C.A. (2022). Automated in Situ Water Quality Monitoring—Characterizing System Dynamics in Urban-Impacted and Natural Environments. In: Mustafa, F.B. (eds) Methodological Approaches in Physical Geography. Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-031-07113-3_6

Download citation

Publish with us

Policies and ethics

Navigation