Log in

Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microcystin (MCY)-producing harmful cyanobacterial blooms (cHABs) are an annual occurrence in Lake Erie, and buoys equipped with water quality sondes have been deployed to help researchers and resource managers track cHABs. The objective of this study was to determine how well water quality sondes attached to buoys measure total algae and cyanobacterial biomass and water turbidity. Water samples were collected next to two data buoys in western Lake Erie (near Gibraltar Island and in the Sandusky subbasin) throughout summers 2015, 2016, and 2017 to determine correlations between buoy sonde data and water sample data. MCY and nutrient concentrations were also measured. Significant (P < 0.001) linear relationships (R2 > 0.75) occurred between cyanobacteria buoy and water sample data at the Gibraltar buoy, but not at the Sandusky buoy; however, the coefficients at the Gibraltar buoy differed significantly across years. There was a significant correlation between buoy and water sample total chlorophyll data at both buoys, but the coefficient varied considerably between buoys and among years. Total MCY concentrations at the Gibraltar buoy followed similar temporal patterns as buoy and water sample cyanobacterial biomass data, and the ratio of MCY to cyanobacteria-chlorophyll decreased with decreased ambient nitrate concentrations. These results suggest that buoy data are difficult to compare across time and space. Additionally, the inclusion of nitrate concentration data can lead to more robust predictions on the relative toxicity of blooms. Overall, deployed buoys with sondes that are routinely cleaned and calibrated can track relative cyanobacteria abundance and be used as an early warning system for potentially toxic blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Backer LC, Landsberg JH, Miller M, Keel K, Taylor T (2013) Canine cyanotoxin poisonings in the United States (1920s-2012): review of suspected and confirmed cases from three data sources. Toxins 5:1597–1628. https://doi.org/10.3390/toxins5091597

    Article  Google Scholar 

  • Bastien C, Cardin R, Veilleux É, Deblois C, Warren A, Laurion I (2011) Performance evaluation of phycocyanin probes for the monitoring of cyanobacteria. J Environ Monit 13:110–118. https://doi.org/10.1039/C0EM00366B

    Article  CAS  Google Scholar 

  • Beardall J, Young E, Roberts S (2001) Approaches for determining phytoplankton nutrient limitation. Aquat Sci 63:44–69

    Article  CAS  Google Scholar 

  • Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M, Hansen UP, Dau H (2002) A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72:39–53

    Article  CAS  Google Scholar 

  • Bingham M, Sinha S, Lupi F (2015) Economic benefits of reducing harmful algal blooms in Lake Erie. Environmental Consulting & Technology, Inc., Environmental Consulting & Technology, Inc.

  • Bowling LC, Zamyadi A, Henderson RK (2016) Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations. Water Res 105:22–33. https://doi.org/10.1016/j.watres.2016.08.051

    Article  CAS  Google Scholar 

  • Bridgeman TB, Chaffin JD, Kane DD, Conroy JD, Panek SE, Armenio PM (2012) From river to lake: phosphorus partitioning and algal community compositional changes in Western Lake Erie. J Great Lakes Res 38:90–97

    Article  CAS  Google Scholar 

  • Bullerjahn GS, McKay RM, Davis TW et al (2016) Global solutions to regional problems: collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae 54:223–238. https://doi.org/10.1016/j.hal.2016.01.003

    Article  Google Scholar 

  • Campbell D, Hurry V, Clarke AK, Gustafsson P, Oquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683

    CAS  Google Scholar 

  • Chaffin JD, Bridgeman TB, Heckathorn SA, Mishra S (2011) Assessment of Microcystis growth rate potential and nutrient status across a trophic gradient in western Lake Erie. J Great Lakes Res 37:92–100. https://doi.org/10.1016/j.jglr.2010.11.016

    Article  CAS  Google Scholar 

  • Chaffin JD, Bridgeman TB, Heckathorn SA, Krause AE (2012) Role of suspended sediments and mixing in reducing photoinhibition in the bloom-forming cyanobacterium Microcystis. J Water Res Prot 4:1029–1041

    Article  CAS  Google Scholar 

  • Chaffin JD, Bridgeman TB, Bade DL (2013) Nitrogen constrains the growth of late summer cyanobacterial blooms in Lake Erie. Adv Microbiol 03:16–26. https://doi.org/10.4236/aim.2013.36A003

    Article  CAS  Google Scholar 

  • Chaffin JD, Sigler V, Bridgeman TB (2014) Connecting the blooms: tracking and establishing the origin of the record-breaking Lake Erie Microcystis bloom of 2011 using DGGE. Aquat Microb Ecol 73:29–39

    Article  Google Scholar 

  • Chaffin JD, Davis TW, Smith DJ, Baer MM, Dick GJ (2018) Interactions between nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and microcystin production. Harmful Algae 73:84–97. https://doi.org/10.1016/j.hal.2018.02.001

    Article  Google Scholar 

  • Chang D-W, Hobson P, Burch M, Lin T-F (2012) Measurement of cyanobacteria using in-vivo fluoroscopy—effect of cyanobacterial species, pigments, and colonies. Water Res 46:5037–5048. https://doi.org/10.1016/j.watres.2012.06.050

    Article  CAS  Google Scholar 

  • Conroy JD, Kane DD, Dolan DM, Edwards WJ, Charlton MN, Culver DA (2005) Temporal trends in Lake Erie plankton biomass: roles of external phosphorus loading and Dreissenid mussels. J Great Lakes Res 31(Supplement 2):89–110. https://doi.org/10.1016/S0380-1330(05)70307-5

    Article  CAS  Google Scholar 

  • Conroy JD, Kane DD, Quinlan EL, Edwards WJ, Culver DA (2017) Abiotic and biotic controls of phytoplankton biomass dynamics in a freshwater tributary, estuary, and large lake ecosystem: Sandusky Bay (Lake Erie) chemostat. Inland Waters 1–20. https://doi.org/10.1080/20442041.2017.1395142

  • Davis CC (1964) Evidence for the eutrophication of Lake Erie from phytoplankton records. Limnol Oceanogr 9:275–283

    Article  Google Scholar 

  • Davis TW, Koch F, Marcoval MA, Wilhelm SW, Gobler CJ (2012) Mesozooplankton and microzooplankton grazing during cyanobacterial blooms in the western basin of Lake Erie. Harmful Algae 15:26–35. https://doi.org/10.1016/j.hal.2011.11.002

    Article  Google Scholar 

  • DePinto JV, Young TC, McIlroy LM (1986) Great Lakes water quality improvement. Environ Sci Technol 20:752–759

    Article  CAS  Google Scholar 

  • Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19. https://doi.org/10.1021/es801217q

    Article  CAS  Google Scholar 

  • Dyble J, Fahnenstiel GL, Litaker RW, Millie DF, Tester PA (2008) Microcystin concentrations and genetic diversity of Microcystis in the lower Great Lakes. Environ Toxicol 23:507–516

    Article  CAS  Google Scholar 

  • Fischer WJ, Garthwaite I, Miles CO, Ross KM, Aggen JB, Chamberlin AR, Towers NR, Dietrich DR (2001) Congener-independent immunoassay for microcystins and nodularins. Environ Sci Technol 35:4849–4856. https://doi.org/10.1021/es011182f

    Article  CAS  Google Scholar 

  • Ghadouani A, Smith REH (2005) Phytoplankton distribution in Lake Erie as assessed by a new in situ spectrofluorometric technique. J Great Lakes Res 31:154–167

    Article  CAS  Google Scholar 

  • Gobler CJ, Burkholder JM, Davis TW et al (2016) The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54:87–97. https://doi.org/10.1016/j.hal.2016.01.010

    Article  CAS  Google Scholar 

  • Golnick PC, Chaffin JD, Bridgeman TB, Zellner BC, Simons VE (2016) A comparison of water sampling and analytical methods in western Lake Erie. J Great Lakes Res 42:965–971. https://doi.org/10.1016/j.jglr.2016.07.031

    Article  CAS  Google Scholar 

  • Gregor J, Marsálek B (2004) Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. Water Res 38:517–522. https://doi.org/10.1016/j.watres.2003.10.033

    Article  CAS  Google Scholar 

  • Hampel JJ, McCarthy MJ, Gardner WS et al (2018) Nitrification and ammonium dynamics in Taihu Lake, China: seasonal competition for ammonium between nitrifiers and cyanobacteria. Biogeosciences 15:733–748. https://doi.org/10.5194/bg-15-733-2018

    Article  Google Scholar 

  • Harke MJ, Gobler CJ (2015) Daily transcriptome changes reveal the role of nitrogen in controlling microcystin synthesis and nutrient transport in the toxic cyanobacterium, Microcystis aeruginosa. BMC Genomics 16:1068

    Article  CAS  Google Scholar 

  • Harke MJ, Davis TW, Watson SB, Gobler CJ (2016a) Nutrient-controlled niche differentiation of western Lake Erie cyanobacterial populations revealed via metatranscriptomic surveys. Environ Sci Technol 50:604–615. https://doi.org/10.1021/acs.est.5b03931

    Article  CAS  Google Scholar 

  • Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW (2016b) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20. https://doi.org/10.1016/j.hal.2015.12.007

    Article  Google Scholar 

  • Harrison JW, Howell ET, Watson SB, Smith REH (2016) Improved estimates of phytoplankton community composition based on in situ spectral fluorescence: use of ordination and field-derived norm spectra for the bbe FluoroProbe. Can J Fish Aquat Sci 73:1472–1482. https://doi.org/10.1139/cjfas-2015-0360

    Article  Google Scholar 

  • Hodges CM, Wood SA, Puddick J, McBride CG, Hamilton DP (2017) Sensor manufacturer, temperature, and cyanobacteria morphology affect phycocyanin fluorescence measurements. Environ Sci Pollut Res 25:1–10. https://doi.org/10.1007/s11356-017-0473-5

    Article  CAS  Google Scholar 

  • Horst GP, Sarnelle O, White JD, Hamilton SK, Kaul RRB, Bressie JD (2014) Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res 54:188–198

    Article  CAS  Google Scholar 

  • Houliez E, Lizon F, Thyssen M, Artigas LF, Schmitt FG (2012) Spectral fluorometric characterization of haptophyte dynamics using the FluoroProbe: an application in the eastern English Channel for monitoring Phaeocystis globosa. J Plankton Res 34:136–151. https://doi.org/10.1093/plankt/fbr091

    Article  Google Scholar 

  • Huisman J, Matthijs HCP, Visser PM (eds) (2010) Harmful cyanobacteria, Softcover reprint of hardcover 1st ed. 2005 edition. Springer, Place of publication not identified

  • Humbert J-F, Törökné A (2016) New tools for the monitoring of cyanobacteria in freshwater ecosystems. In Meriluoto J, Spoof L, Codd GA (eds) Handbook of cyanobacterial monitoring and cyanotoxin analysis. Wiley, pp 84–88

  • Jochens AE, Malone TC, Stumpf RP, Hickey BM, Carter M, Morrison R, Dyble J, Jones B, Trainer VL (2010) Integrated ocean observing system in support of forecasting harmful algal blooms. Mar Technol Soc J 44:99–121. https://doi.org/10.4031/MTSJ.44.6.16

    Article  Google Scholar 

  • Kane DD, Conroy JD, Richards RP et al (2014) Re-eutrophication of Lake Erie: correlations between tributary nutrient loads and phytoplankton biomass. J Great Lakes Res 40:496–501

    Article  CAS  Google Scholar 

  • Loisa O, Kääriä J, Laaksonlaita J et al (2015) From phycocyanin fluorescence to absolute cyanobacteria biomass: an application using in-situ fluorometer probes in the monitoring of potentially harmful cyanobacteria blooms. Water Pract Technol 10:695–698. https://doi.org/10.2166/wpt.2015.083

    Article  Google Scholar 

  • Long BM, Jones GJ, Orr PT (2001) Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl Environ Microbiol 67:278–283. https://doi.org/10.1128/AEM.67.1.278-283.2001

    Article  CAS  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38

    Article  Google Scholar 

  • Makarewicz JC (1993) Phytoplankton biomass and species composition in Lake Erie, 1970 to 1987. J Great Lakes Res 19:258–274

    Article  Google Scholar 

  • McQuaid N, Zamyadi A, Prévost M et al (2010) Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source. J Environ Monit 13:455–463

    Article  Google Scholar 

  • Michalak AM, Anderson EJ, Beletsky D, Boland S, Bosch NS, Bridgeman TB, Chaffin JD, Cho K, Confesor R, Daloglu I, DePinto JV, Evans MA, Fahnenstiel GL, He L, Ho JC, Jenkins L, Johengen TH, Kuo KC, LaPorte E, Liu X, McWilliams MR, Moore MR, Posselt DJ, Richards RP, Scavia D, Steiner AL, Verhamme E, Wright DM, Zagorski MA (2013) Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc Natl Acad Sci 110:6448–6452. https://doi.org/10.1073/pnas.1216006110

    Article  Google Scholar 

  • Millie DF, Fahnenstiel GL, Dyble Bressie J, Pigg RJ, Rediske RR, Klarer DM, Tester PA, Litaker RW (2009) Late-summer phytoplankton in western Lake Erie (Laurentian Great Lakes): bloom distributions, toxicity, and environmental influences. Aquat Ecol 43:915–934

    Article  CAS  Google Scholar 

  • Orr PT, Jones GJ (1998) Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr 43:1604–1614. https://doi.org/10.4319/lo.1998.43.7.1604

    Article  CAS  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58. https://doi.org/10.1126/science.1155398

    Article  CAS  Google Scholar 

  • Poulton NJ (2016) FlowCam: quantification and classification of phytoplankton by imaging flow cytometry. In: Imaging flow cytometry. Humana Press, New York, pp 237–247

    Google Scholar 

  • Qian SS, Chaffin JD, DuFour MR et al (2015) Quantifying and reducing uncertainty in estimated microcystin concentrations from the ELISA method. Environ Sci Technol 49:14221–14229. https://doi.org/10.1021/acs.est.5b03029

    Article  CAS  Google Scholar 

  • Read J, Klump V, Johengen T, Schwab D, Paige K, Eddy S, Anderson E, Manninen C (2010) Working in freshwater: the Great Lakes observing system contributions to regional and national observations, data infrastructure, and decision support. Mar Technol Soc J 44:84–98. https://doi.org/10.4031/MTSJ.44.6.12

    Article  Google Scholar 

  • Rinta-Kanto JM, Konopko EA, DeBruyn JM et al (2009) Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae 8:665–673. https://doi.org/10.1016/j.hal.2008.12.004

    Article  CAS  Google Scholar 

  • Rosen BH, St. Amand A (2015) Field and laboratory guide to freshwater cyanobacteria harmful algal blooms for Native American and Alaska Native communities. U.S. Geological Survey, Reston

    Book  Google Scholar 

  • Stumpf RP, Johnson LT, Wynne TT, Baker DB (2016) Forecasting annual cyanobacterial bloom biomass to inform management decisions in Lake Erie. J Great Lakes Res 42:1174–1183. https://doi.org/10.1016/j.jglr.2016.08.006

    Article  CAS  Google Scholar 

  • Tillmanns AR, Wilson AE, Pick FR, Sarnelle O (2008) Meta-analysis of cyanobacterial effects on zooplankton population growth rate: species-specific responses. Fundam Appl Limnol Arch Für Hydrobiol 171:285–295. https://doi.org/10.1127/1863-9135/2008/0171-0285

    Article  Google Scholar 

  • Wang H, Gruden CL, Bridgeman TB, Chaffin JD (2009) Detection and quantification of Microcystis spp. and microcystin-LR in Western Lake Erie during the summer of 2007. Water Sci Technol 60:1837–1846

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic Press, San Diego

    Google Scholar 

  • Zamyadi A, Mcquaid N, Dorner S et al (2012) Cyanobacterial detection using in vivo fluorescence-probes: managing interferences for improved decision-making. J Am Water Works Assoc 104:E466–E479. https://doi.org/10.5942/jawwa.2012.104.0114

    Article  CAS  Google Scholar 

  • Zamyadi A, Choo F, Newcombe G, Stuetz R, Henderson RK (2016) A review of monitoring technologies for real-time management of cyanobacteria: recent advances and future direction. TrAC Trends Anal Chem 85:83–96. https://doi.org/10.1016/j.trac.2016.06.023

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for Fondriest Environmental’s donation of the Gibraltar buoy to Stone Lab. We thank C. Nauman, K. Rossos, K. Slodysko, E. Fox, K. Moore, M. Potts, A. Johnson, K. Jones, and other Stone Lab staff and students for assistance in the field and lab.

Funding

The Sandusky buoy was purchased with funds from the Ohio Department of Higher Education (grant to Bowling Green State University). This work was funded by the Ohio Water Resources Center under award number 2016OH484B, Ohio Sea Grant, and Friends of Stone Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin D. Chaffin.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaffin, J.D., Kane, D.D., Stanislawczyk, K. et al. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements. Environ Sci Pollut Res 25, 25175–25189 (2018). https://doi.org/10.1007/s11356-018-2612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2612-z

Keywords

Navigation