Image Colorization: A Survey of Methodolgies and Techniques

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2021 (AISI 2021)

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 100))

Abstract

Image Colorization is the problem of defining colors for grayscale images. Deep neural networks proved a great success in different fields recently. Therefore, it is used to solve the image colorization problem; moreover, it proved to be a very good choice. In literature, few review papers addressed the colorization problem. Most of them classified the research papers according to one or two criteria as input image type, a number of colored output images, colorization methodology, techniques or networks used in colorization, and network paths. This review classifies the papers according to these criteria intagrally and with a relatively large number of papers. Besides, the review displays the commonly used datasets and measures of comparison. It is found that deep learning is a widely used solution methodology to the problem. Unifying the comparison measures and data sets might help show the advances of the new models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, L., Shang, Y., Zhao, J., Li, Z.: Comparison of grayscale image colorization methods in different color spaces. In: Zhao, P., Ouyang, Y., Xu, M., Yang, Li., Ren, Y. (eds.) Advances in Graphic Communication, Printing and Packaging. LNEE, vol. 543, pp. 290–300. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3663-8_40

    Chapter  Google Scholar 

  2. Nah, S., et al.: NTIRE 2019 challenge on image colorization: report. In: IEEE Computing Socitey Conference on Computer Vision and Pattern Recognition Workshops, vol. 2019-June, pp. 2233–2240 (2019). https://doi.org/10.1109/CVPRW.2019.00276

  3. Anwar, S., Tahir, M., Li, C., Mian, A., Shahbaz Khan, F., Wahab Muzaffar, A.: Image colorization: a survey and dataset. ar**v, pp. 1–19 (2020)

    Google Scholar 

  4. Pierre, F., et al.: Recent approaches for image colorization (2020)

    Google Scholar 

  5. Chakraborty, S.: Image colourisation using deep feature-guided image retrieval. IET Image Process. 13(7), 1130–1137 (2019). https://doi.org/10.1049/iet-ipr.2018.6169

    Article  Google Scholar 

  6. Li, F., Ng, M.K.: Image colorization by using graph bi-Laplacian. Adv. Comput. Math. 45(3), 1521–1549 (2019). https://doi.org/10.1007/s10444-019-09677-x

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang, L., Wang, J., Lu, G., Zhang, D., Fu, J.: Hand-drawn grayscale image colorful colorization based on natural image. Vis. Comput. 35(11), 1667–1681 (2018). https://doi.org/10.1007/s00371-018-1613-8

    Article  Google Scholar 

  8. Tan, P., Pierre, F., Nikolova, M.: Inertial alternating generalized forward–backward splitting for image colorization. J. Math. Imaging Vis. 61(5), 672–690 (2019). https://doi.org/10.1007/s10851-019-00877-0

    Article  MathSciNet  MATH  Google Scholar 

  9. **, Z., Min, L., Ng, M.K., Zheng, M.: Image colorization by fusion of color transfers based on DFT and variance features. Comput. Math. with Appl. 77(9), 2553–2567 (2019). https://doi.org/10.1016/j.camwa.2018.12.033

    Article  MathSciNet  MATH  Google Scholar 

  10. Bao, B., Fu, H.: Scribble-based colorization for creating smooth-shaded vector graphics. Comput. Graph. 81, 73–81 (2019). https://doi.org/10.1016/j.cag.2019.04.003

    Article  Google Scholar 

  11. Sugawara, M., Uruma, K., Hangai, S., Hamamoto, T.: Local and global graph approaches to image colorization. IEEE Signal Process. Lett. 27, 765–769 (2020). https://doi.org/10.1109/LSP.2020.2994817

    Article  Google Scholar 

  12. Min, L., Li, Z., **, Z., Cui, Q.: Color edge preserving image colorization with a coupled natural vectorial total variation. Comput. Vis. Image Underst. 196(April), 102981 (2020). https://doi.org/10.1016/j.cviu.2020.102981

    Article  Google Scholar 

  13. Fang, F., Wang, T., Zeng, T., Zhang, G.: A superpixel-based variational model for image colorization. IEEE Trans. Vis. Comput. Graph. 26(10), 2931–2943 (2020). https://doi.org/10.1109/TVCG.2019.2908363

    Article  Google Scholar 

  14. Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. In: Proceedings of 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2002, pp. 277–280 (2002). https://doi.org/10.1145/566570.566576

  15. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004). https://doi.org/10.1145/1015706.1015780

    Article  Google Scholar 

  16. Morimoto, Y., Taguchi, Y., Naemura, T.: Automatic colorization of grayscale images using multiple images on the web. In: SIGGRAPH 2009 Posters, SIGGRAPH 2009, p. 60558 (2009). https://doi.org/10.1145/1599301.1599333

  17. Charpiat, G., et al.: Automatic image colorization via multimodal predictions. To Cite This Version: Automatic Image Colorization via Multimodal Predictions (2010)

    Google Scholar 

  18. Chia, A.Y.S., et al.: Semantic colorization with internet images. In: Proceedings of 2011 SIGGRAPH Asia Conference, SA 2011, no. May 2017, pp. 1–8 (2011). https://doi.org/10.1145/2070752.2024190

  19. Liu, S., Zhang, X.: Automatic grayscale image colorization using histogram regression. Pattern Recognit. Lett. 33(13), 1673–1681 (2012). https://doi.org/10.1016/j.patrec.2012.06.001

    Article  Google Scholar 

  20. Sousa, A., Kabirzadeh, R., Blaes, P.: Automatic colorization of grayscale images. In: 3rd International Conference on Recent Trends Engineering Technology (ICRTET 2014), vol. 1, no. ELSEVIER 2014 (2014). http://cs229.stanford.edu/proj2013/KabirzadehSousaBlaes-AutomaticColorizationOfGrayscaleImages.pdf

  21. Trémea, A., Schettini, R., Tominaga, S.: Descriptor-based image colorization and regularization. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) Computational Color Imaging. CCIW 2015. Lecture Notes in Computer Science, vol 9016, pp. 59–68. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15979-9_6

    Chapter  Google Scholar 

  22. Zanoci, C., Andress, J.: From grayscale to color : digital image colorization using machine learning, pp. 1–6 (2015)

    Google Scholar 

  23. Deshpande, A., Rock, J., Forsyth, D.: Learning large-scale automatic image colorization. In: Proceedings of IEEE International Conference on Computer Vision, vol. 2015 Inter, pp. 567–575 (2015). https://doi.org/10.1109/ICCV.2015.72

  24. Pierre, F., Aujol, J.F., Bugeau, A., Papadakis, N., Ta, V.T.: Luminance-chrominance model for image colorization∗. SIAM J. Imaging Sci. 8(1), 536–563 (2015). https://doi.org/10.1137/140979368

    Article  MathSciNet  MATH  Google Scholar 

  25. Hasnat, A., Halder, S., Bhattacharjee, D., Nasipuri, M.: A proposed grayscale face image colorization system using particle swarm optimization. Int. J. Virtual Augment. Real. 1(1), 72–89 (2017). https://doi.org/10.4018/ijvar.2017010106

    Article  Google Scholar 

  26. Li, B., Zhao, F., Su, Z., Liang, X., Lai, Y.K., Rosin, P.L.: Example-based image colorization using locality consistent sparse representation. IEEE Trans. Image Process. 26(11), 5188–5202 (2017). https://doi.org/10.1109/TIP.2017.2732239

    Article  MathSciNet  MATH  Google Scholar 

  27. Arbelot, B., Vergne, R., Hurtut, T., Thollot, J.: Local texture-based color transfer and colorization. Comput. Graph. 62, 15–27 (2017). https://doi.org/10.1016/j.cag.2016.12.005

    Article  Google Scholar 

  28. **a, Y., Qu, S., Wan, S.: Scene guided colorization using neural networks. Neural Comput. Appl. 0123456789 (2018). https://doi.org/10.1007/s00521-018-3828-z

  29. Su, Z., Liang, X., Guo, J., Gao, C., Luo, X.: An edge-refined vectorized deep colorization model for grayscale-to-color images. Neurocomputing 311, 305–315 (2018). https://doi.org/10.1016/j.neucom.2018.05.082

    Article  Google Scholar 

  30. Joshi, M.R., Nkenyereye, L., Joshi, G.P., Riazul Islam, S.M., Abdullah-Al-wadud, M., Shrestha, S.: Auto-colorization of historical images using deep convolutional neural networks. Mathematics 8(12), 1–17 (2020). https://doi.org/10.3390/math8122258

  31. Wan, S., **a, Y., Qi, L., Yang, Y.H., Atiquzzaman, M.: Automated colorization of a grayscale image with seed points propagation. IEEE Trans. Multimed. 22(7), 1756–1768 (2020). https://doi.org/10.1109/TMM.2020.2976573

    Article  Google Scholar 

  32. Pahal, S., Sehrawat, P.: Image colorization with deep convolutional neural networks. In: Hura, G.S., Singh, A.K., Siong Hoe, L. (eds.) Advances in Communication and Computational Technology. LNEE, vol. 668, pp. 45–56. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5341-7_4

    Chapter  Google Scholar 

  33. Thawonmas, R., Nguyen, T., Mori, K.: Image colorization using a deep convolutional neural network, p. 2 (2016)

    Google Scholar 

  34. Zhao, Y., Xu, D., Zhang, Y.: Image colorization using convolutional neural network. In: Tan, T., et al. (eds.) IGTA 2016. CCIS, vol. 634, pp. 238–244. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-2260-9_27

    Chapter  Google Scholar 

  35. Dabas, C., Jain, S., Bansal, A., Sharma, V.: Implementation of image colorization with convolutional neural network. Int. J. Syst. Assur. Eng. Manage. 11(3), 625–634 (2020). https://doi.org/10.1007/s13198-020-00960-5

    Article  Google Scholar 

  36. Nguyen-Quynh, T.T., Kim, S.H., Do, N.T.: Image colorization using the global scene-context style and pixel-wise semantic segmentation. IEEE Access 8, 214098–214114 (2020). https://doi.org/10.1109/ACCESS.2020.3040737

    Article  Google Scholar 

  37. Zhang, L.M., et al.: Two-stage sketch colorization. In: SIGGRAPH Asia 2018 Technical Paper SIGGRAPH Asia 2018, vol. 37, no. 6, December 2018. https://doi.org/10.1145/3272127.3275090

  38. Baldassarre, F., et al.: Deep koalarization: image colorization using CNNs and inception-resnet-v2. ar**v, no. June 2017, pp. 1–12 (2017)

    Google Scholar 

  39. Zhou, Y., Hwang, J.: Image colorization with deep convolutional neural networks (2016)

    Google Scholar 

  40. He, M., Chen, D., Liao, J., Sander, P.V., Yuan, L., Kong, H.: Deep exemplar-based colorization. ACM Trans. Graph. 37(4) (2018). https://doi.org/10.1145/3197517.3201365

  41. Cheng, Z., et al.: Deep colorization (2016)

    Google Scholar 

  42. Zhang, W., Fang, C.-W., Li, G.-B.: Automatic colorization with improved spatial coherence and boundary localization. J. Comput. Sci. Technol. 32(3), 494–506 (2017). https://doi.org/10.1007/s11390-017-1739-6

    Article  Google Scholar 

  43. Kang, S., Chang, J., Choo, J., Chang, J.: Consistent comic colorization with pixel-wise background classification, vol. 1, no. Nips, pp. 1–6 (2017)

    Google Scholar 

  44. **ao, Y., Zhou, P., Zheng, Y.: Interactive deep colorization using simultaneous global and local inputs, no. 4, pp. 1887–1891 (2019)

    Google Scholar 

  45. Limmer, M., Lensch, H.P.A.A.: Infrared colorization using deep convolutional neural networks. In: Proceedings of 2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016, pp. 61–68 (2017). https://doi.org/10.1109/ICMLA.2016.114

  46. Mouzon, T., Pierre, F., Berger, M.-O.: Joint CNN and variational model for fully-automatic image colorization. In: Lellmann, J., Burger, M., Modersitzki, J. (eds.) SSVM 2019. LNCS, vol. 11603, pp. 535–546. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22368-7_42

    Chapter  Google Scholar 

  47. Cheng, Z., Yang, Q., Sheng, B.: Colorization using neural network ensemble. IEEE Trans. Image Process. 26(11), 5491–5505 (2017). https://doi.org/10.1109/TIP.2017.2740620

    Article  MathSciNet  MATH  Google Scholar 

  48. Tang, C., Zheng, X., Zhu, W.: A fast near-infrared image colorization deep learning mode, pp. 118–130 (2018)

    Google Scholar 

  49. Guadarrama, S., et al.: Pixcolor: pixel recursive colorization. ar**v, pp. 1–17 (2017)

    Google Scholar 

  50. Zhang, R., et al.: Real-time user-guided image colorization with learned deep priors. ACM Trans. Graph. 36(4) (2017). https://doi.org/10.1145/3072959.3073703

  51. Manjunatha, V., Iyyer, M., Boyd-Graber, J., Davis, L.: Learning to color from language. In: NAACL HLT 2018 - 2018 Conference on North American Chapter of the Association for Computational Linguistics: Human Language Technologies- Proceedings Conference, vol. 2, pp. 764–769 (2018). https://doi.org/10.18653/v1/n18-2120

  52. Royer, A., Kolesnikov, A., Lampert, C.H.: Probabilistic image colorization. ar**v, pp. 1–15 (2017)

    Google Scholar 

  53. Daly, R.: CNN assisted colorization of grayscale images. Cs231N.Stanford.Edu (2016)

    Google Scholar 

  54. Varga, D., Sziranyi, T.: Fully automatic image colorization based on convolutional neural network, pp. 3691–3696 (2016). https://doi.org/10.1109/ICPR.2016.7900208

  55. Zhao, J., Liu, L., Snoek, C.G.M.M., Han, J., Shao, L.: Pixel-level semantics guided image colorization. ar**v, pp. 1–12 (2018)

    Google Scholar 

  56. Fenu, S., Bagwell, C.: Image colorization using residual networks, pp. 1–8 (2016). https://www.cc.gatech.edu/~hays/7476/projects/Stefano_Carden.pdf

  57. Bagaria, V.K.: CS231N project: coloring black and white world using deep neural nets. Cs231N.Stanford.Edu (2016)

    Google Scholar 

  58. Han, L.M.G.: Combining deep convolutional neural networks with Markov random fields for image colorization, p. 281 (2016)

    Google Scholar 

  59. He, M., Liao, J., Chen, D., Yuan, L., Sander, P.V.: Progressive color transfer with dense semantic correspondences. ar**v (2018)

    Google Scholar 

  60. Liang, X., Su, Z., **ao, Y., Guo, J., Luo, X.: Deep patch-wise colorization model for grayscale images. In: SA 2016 - SIGGRAPH ASIA 2016 Technical Briefs (2016). https://doi.org/10.1145/3005358.3005375

  61. Cheng, Z.: Deep colorization.pdf, vol. 1, pp. 415–423 (2015)

    Google Scholar 

  62. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35

    Chapter  Google Scholar 

  63. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color!: joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. 35(4), 1–11 (2016). https://doi.org/10.1145/2897824.2925974

    Article  Google Scholar 

  64. Su, J.-W., Chu, H.-K., Huang, J.-B.: Instance-aware image colorization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2020, pp. 7968–7977 (2020). https://openaccess.thecvf.com/content_CVPR_2020/html/Su_Instance-Aware_Image_Colorization_CVPR_2020_paper.html

  65. Tran, T.-B., Tran, T.-S.: Automatic natural image colorization. In: Nguyen, N.T., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds.) ACIIDS 2020. LNCS (LNAI), vol. 12033, pp. 612–621. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41964-6_53

    Chapter  Google Scholar 

  66. Ozbulak, G.: Image colorization by capsule networks. In: IEEE Computing Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2019-June, pp. 2150–2158 (2019). https://doi.org/10.1109/CVPRW.2019.00268

  67. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  68. Vitoria, P., Raad, L., Ballester, C.: ChromaGAN: adversarial picture colorization with semantic class distribution. In: Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, pp. 2434–2443, July 2020. https://doi.org/10.1109/WACV45572.2020.9093389

  69. Zhao, J., Han, J., Shao, L., Snoek, C.G.M.: Pixelated semantic colorization. Int. J. Comput. Vis. 128(4), 818–834 (2019). https://doi.org/10.1007/s11263-019-01271-4

    Article  Google Scholar 

  70. Suárez, P.L., Sappa, A.D., Vintimilla, B.X.: Learning to colorize infrared images. In: De la Prieta, F., et al. (eds.) PAAMS 2017. Advances in Intelligent Systems and Computing, vol. 619, pp. 164–172. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61578-3_16

    Chapter  Google Scholar 

  71. Kong, G., Tian, H., Duan, X., Long, H.: Adversarial edge-aware image colorization with semantic segmentation. IEEE Access 9, 28194–28203 (2021). https://doi.org/10.1109/ACCESS.2021.3056144

    Article  Google Scholar 

  72. Bahng, H., et al.: Coloring with words: guiding image colorization through text-based palette generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 443–459. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_27

    Chapter  Google Scholar 

  73. Liu, Y., Qin, Z., Wan, T., Luo, Z.: Auto-painter: cartoon image generation from sketch by using conditional Wasserstein generative adversarial networks. Neurocomputing 311, 78–87 (2018). https://doi.org/10.1016/j.neucom.2018.05.045

    Article  Google Scholar 

  74. Suarez, P.L., Sappa, A.D., Vintimilla, B.X.: Infrared image colorization based on a triplet DCGAN architecture. In: IEEE Computing Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2017-July, pp. 212–217 (2017). https://doi.org/10.1109/CVPRW.2017.32

  75. Lee, J., Kim, E., Lee, Y., Kim, D., Chang, J., Choo, J.: Reference-based sketch image colorization using augmented-self reference and dense semantic correspondence. ar**v, pp. 5801–5810 (2020)

    Google Scholar 

  76. Cao, Y., Zhou, Z., Zhang, W., Yu, Y.: Unsupervised diverse colorization via generative adversarial networks. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_10

    Chapter  Google Scholar 

  77. Zou, C., Mo, H., Gao, C., Du, R., Fu, H.: Language-based colorization of scene sketches. ACM Trans. Graph. 38(6) (2019). https://doi.org/10.1145/3355089.3356561

  78. Frans, K.: Outline Colorization through tandem adversarial networks. ar**v (2017)

    Google Scholar 

  79. Hensman, P., Aizawa, K.: CGAN-based manga colorization using a single training image. In: Proceedings of International Conference on Document Analysis and Recognition, ICDAR, vol. 3, pp. 72–77 (2018). https://doi.org/10.1109/ICDAR.2017.295

  80. Koo, S.: Automatic colorization with deep convolutional generative adversarial networks. Cs231N.Stanford.Edu, no. Figure 1 (2016)

    Google Scholar 

  81. Yoo, S., Bahng, H., Chung, S., Lee, J., Chang, J., Choo, J.: Coloring with limited data: few-shot colorization via memory augmented networks. In: Proceedings of IEEE Computing Society Conference on Computer Vision and Pattern Recognit., vol. 2019-June, pp. 11275–11284 (2019). https://doi.org/10.1109/CVPR.2019.01154

  82. Zhao, Y., Po, L. M., Cheung, K.W., Yu, W.Y., Rehman, Y.A.U.: SCGAN: saliency map-guided colorization with generative adversarial network. IEEE Trans. Circuits Syst. Video Technol. 1–17 (2020). https://doi.org/10.1109/TCSVT.2020.3037688

  83. Kataoka, Y., Matsubara, T., Uehara, K.: Automatic manga colorization with color style by generative adversarial nets. In: Proc. - 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2017, pp. 495–499 (2017). https://doi.org/10.1109/SNPD.2017.8022768

  84. Johari, M.M., Behroozi, H.: Grayscale image colorization using cycle-consistent generative adversarial networks with residual structure enhancer.In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings, vol. 2020-May, pp. 2223–2227 (2020). https://doi.org/10.1109/ICASSP40776.2020.9054432

  85. Kumar, M., Weissenborn, D., Kalchbrenner, N.: Colorization transformer, pp. 1–24 (2021)

    Google Scholar 

  86. Halder, S.S., De, K., Roy, P.P.: Perceptual conditional generative adversarial networks for end-to-end image colourization. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11362, pp. 269–283. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20890-5_18

    Chapter  Google Scholar 

  87. Dhir, R., Ashok, M., Gite, S., Kotecha, K.: Automatic image colorization using GANs. In: Patel, K.K., Garg, D., Patel, A., Lingras, P. (eds.) icSoftComp 2020. CCIS, vol. 1374, pp. 15–26. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0708-0_2

    Chapter  Google Scholar 

  88. Huang, S., et al.: A fully-automatic image colorization scheme using improved CycleGAN with skip connections. Multimed. Tools Appl. 80(17), 26465–26492 (2021). https://doi.org/10.1007/s11042-021-10881-5

    Article  Google Scholar 

  89. Wu, M., et al.: Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space. Vis. Comput. 37(7), 1707–1729 (2020). https://doi.org/10.1007/s00371-020-01933-2

    Article  Google Scholar 

  90. Ci, Y., Ma, X., Wang, Z., Li, H., Luo, Z.: User-guided deep anime line art colorization with conditional adversarial networks. In: MM 2018 – Proceedings of 2018 ACM Multimedia Conference, pp. 1536–1544 (2018). https://doi.org/10.1145/3240508.3240661

  91. Kataoka, Y., Mastubara, T., Uehara, K.: Deep manga colorization with color style extraction by conditional adversarially learned inference. Inf. Eng. Express 3(4), 55–66 (2017)

    Article  Google Scholar 

  92. Kiani, L., Saeed, M., Nezamabadi-pour, H.: Image colorization using generative adversarial networks and transfer learning. In: Iran Conference on Machine Vision and Image Processing MVIP, vol. 2020-Febru, February 2020. https://doi.org/10.1109/MVIP49855.2020.9116882

  93. Hicsonmez, S., Samet, N., Akbas, E., Duygulu, P.: Adversarial segmentation loss for sketch colorization, no. Section 4, February 2021

    Google Scholar 

  94. Li, F., Ma, L., Cai, J.: Multi-discriminator generative adversarial network for high resolution grayscale satellite image colorization. In: International Geoscience and Remote Sensing Symposium, vol. 2018-July, pp. 3489–3492 (2018). https://doi.org/10.1109/IGARSS.2018.8517930

  95. Nazeri, K., Ng, E., Ebrahimi, M.: Image colorization using generative adversarial networks. In: Perales, F.J., Kittler, J. (eds.) AMDO 2018. LNCS, vol. 10945, pp. 85–94. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94544-6_9

    Chapter  Google Scholar 

  96. Ji, G., Wang, Z., Zhou, L., **a, Y., Zhong, S., Gong, S.: SAR image colorization using multidomain cycle-consistency generative adversarial network. IEEE Geosci. Remote Sens. Lett. 18(2), 296–300 (2021). https://doi.org/10.1109/LGRS.2020.2969891

    Article  Google Scholar 

  97. Deshpande, A., Lu, J., Yeh, M.-C. C., Chong, M. J., Forsyth, D.: Learning diverse image colorization. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-Janua, no. Section 4, pp. 2877–2885 (2017). https://doi.org/10.1109/CVPR.2017.307

  98. Messaoud, S., Forsyth, D., Schwing, A.G.: Structural consistency and controllability for diverse colorization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 603–619. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_37

    Chapter  Google Scholar 

  99. Su, J.W., Chu, H.K., Bin Huang, J.: Instance-aware Image Colorization. ar**v (2020)

    Google Scholar 

  100. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2018). https://doi.org/10.1109/TPAMI.2017.2723009

    Article  Google Scholar 

  101. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  102. **ao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: large-scale scene recognition from abbey to zoo. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492 (2010). https://doi.org/10.1109/CVPR.2010.5539970

  103. Patterson, G., Hays, J.: SUN attribute database: Discovering, annotating, and recognizing scene attributes. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2751–2758 (2012). https://doi.org/10.1109/CVPR.2012.6247998

  104. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  105. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  106. Caesar, H., Uijlings, J., Ferrari, V.: COCO-stuff: thing and stuff classes in context (2018)

    Google Scholar 

  107. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136 (2014). https://doi.org/10.1007/s11263-014-0733-5

    Article  Google Scholar 

  108. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset (2017)

    Google Scholar 

  109. Zhou, B., et al.: Semantic understanding of scenes through the ADE20K dataset. Int. J. Comput. Vis. 127(3), 302–321 (2018). https://doi.org/10.1007/s11263-018-1140-0

    Article  Google Scholar 

  110. Khosla, A, et al.: Understanding and predicting image memorability at a large scale. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2015 Inter, pp. 2390–2398 (2015). https://doi.org/10.1109/ICCV.2015.275

  111. Learned-Miller, E., Huang, G.B., RoyChowdhury, A., Li, H., Hua, G.: Labeled faces in the wild: a survey. In: Kawulok, M., Celebi, M.E., Smolka, B. (eds.) Advances in Face Detection and Facial Image Analysis, pp. 189–248. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25958-1_8

    Chapter  Google Scholar 

  112. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., **ao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop, June 2015.

    Google Scholar 

  113. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, vol. 2017-July, pp. 126–135 (2017). https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/html/Agustsson_NTIRE_2017_Challenge_CVPR_2017_paper.html

  114. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  115. Wang, S., Ma, K., Yeganeh, H., Wang, Z., Lin, W.: A patch-structure representation method for quality assessment of contrast changed images. IEEE Signal Process. Lett. 22(12), 2387–2390 (2015). https://doi.org/10.1109/LSP.2015.2487369

    Article  Google Scholar 

  116. Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 41(3), 541–551 (2016). https://doi.org/10.1109/JOE.2015.2469915

    Article  Google Scholar 

  117. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018). https://doi.org/10.1109/CVPR.2018.00068

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Noaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noaman, M.H., Khaled, H., Faheem, H.M. (2022). Image Colorization: A Survey of Methodolgies and Techniques. In: Hassanien, A.E., Snášel, V., Chang, KC., Darwish, A., Gaber, T. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2021. AISI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-030-89701-7_11

Download citation

Publish with us

Policies and ethics

Navigation