Joint CNN and Variational Model for Fully-Automatic Image Colorization

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

This paper aims to couple the powerful prediction of the convolutional neural network (CNN) to the accuracy at pixel scale of the variational methods. In this work, the limitations of the CNN-based image colorization approaches are described. We then focus on a CNN which is able to compute a statistical distribution of the colors for each pixel of the image based on a learning stage on a large color image database. After describing its limitation, the variational method of [17] is briefly recalled. This method is able to select a color candidate among a given set while performing regularization of the result. By combining this approach with a CNN, we designed a fully automatic image colorization framework with an improved accuracy in comparison with CNN alone. Some numerical experiments demonstrate the increased accuracy reached by our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Y., Zhou, Z., Zhang, W., Yu, Y.: Unsupervised diverse colorization via generative adversarial networks. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_10

    Chapter  Google Scholar 

  2. Caselles, V., Facciolo, G., Meinhardt, E.: Anisotropic Cheeger sets and applications. SIAM J. Imaging Sci. 2(4), 1211–1254 (2009)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y., Luo, Y., Ding, Y., Yu, B.: Automatic colorization of images from Chinese black and white films based on CNN. In: IEEE International Conference on Audio, Language and Image Processing, pp. 97–102 (2018)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  5. Deshpande, A., Lu, J., Yeh, M.C., Chong, M.J., Forsyth, D.A.: Learning diverse image colorization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2877–2885 (2017)

    Google Scholar 

  6. Guadarrama, S., Dahl, R., Bieber, D., Shlens, J., Norouzi, M., Murphy, K.: Pixcolor: pixel recursive colorization. In: British Machine Vision Conference (2017)

    Google Scholar 

  7. He, M., Chen, D., Liao, J., Sander, P.V., Yuan, L.: Deep exemplar-based colorization. ACM Trans. Graph. 37(4), 47:1–47:16 (2018)

    Google Scholar 

  8. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color! Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. 35(4), 110 (2016)

    Article  Google Scholar 

  9. Irony, R., Cohen-Or, D., Lischinski, D.: Colorization by example. In: Eurographics Symposium on Rendering, vol. 2. Citeseer (2005)

    Google Scholar 

  10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  11. Kang, S.H., March, R.: Variational models for image colorization via chromaticity and brightness decomposition. IEEE Trans. Image Process. 16(9), 2251–2261 (2007)

    Article  MathSciNet  Google Scholar 

  12. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35

    Chapter  Google Scholar 

  13. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004)

    Article  Google Scholar 

  14. Lézoray, O., Ta, V.T., Elmoataz, A.: Nonlocal graph regularization for image colorization. In: IEEE International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  15. Persch, J., Pierre, F., Steidl, G.: Exemplar-based face colorization using image morphing. J. Imaging 3(4), 48 (2017)

    Article  Google Scholar 

  16. Pierre, F., Aujol, J.F., Bugeau, A., Ta, V.T.: Interactive video colorization within a variational framework. SIAM J. Imaging Sci. 10(4), 2293–2325 (2017)

    Article  MathSciNet  Google Scholar 

  17. Pierre, F., Aujol, J.F., Bugeau, A., Papadakis, N., Ta, V.T.: Luminance-chrominance model for image colorization. SIAM J. Imaging Sci. 8(1), 536–563 (2015)

    Article  MathSciNet  Google Scholar 

  18. Royer, A., Kolesnikov, A., Lampert, C.H.: Probabilistic image colorization. In: British Machine Vision Conference (2017)

    Google Scholar 

  19. Sapiro, G.: Inpainting the colors. In: IEEE International Conference on Image Processing, vol. 2, p. II-698 (2005)

    Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  21. Su, Z., Liang, X., Guo, J., Gao, C., Luo, X.: An edge-refined vectorized deep colorization model for grayscale-to-color images. Neurocomputing 311, 305–315 (2018)

    Article  Google Scholar 

  22. Tan, P., Pierre, F., Nikolova, M.: Inertial alternating generalized forward-backward splitting for image colorization. J. Math. Imaging Vis. (2019, to appear)

    Google Scholar 

  23. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  24. Zhang, R., et al.: Real-time user-guided image colorization with learned deep priors. ACM Trans. Graph. 36(4), 119:1–119:11 (2017). https://doi.org/10.1145/3072959.3073703

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Pierre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mouzon, T., Pierre, F., Berger, MO. (2019). Joint CNN and Variational Model for Fully-Automatic Image Colorization. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation