Plant Probiotics: Technical Challenges and Emerging Solutions for Enhancing Food Crops

  • Chapter
  • First Online:
Soil Microbiomes for Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 27))

  • 1671 Accesses

Abstract

The increased and non-judicious use of pesticides and fertilizers has associated complications on the human, animal and plant health. They may accumulate in water and soil to reduce diversification of croplands, limit nutrients availability and diminish genetic diversity of the associated microbes, flora and fauna. Chemical pesticides and fertilizers are also known to impart global warming, insect, animal and human genetic disorders and diseases. Plant probiotics, thereby enhancing plant health, growth and production, not only reduce/minimize the use of chemical pesticides and fertilizers but also are helpful reclaiming the soil beneficial for all living organisms. However, there are certain shortcomings and challenges associated with the use of plant probiotics. This chapter circumvents the studies covering, in general, the origin, classification, mechanism of action, and in specific, the perspectives and challenges using plant probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Álvarez B, Biosca EG (2017) Bacteriophage-based bacterial wilt biocontrol for an environmentally sustainable agriculture. Front Plant Sci 8:1218

    Article  PubMed  PubMed Central  Google Scholar 

  • Arif MS, Shahzad S M, Riaz M, Yasmeen T, Shahzad T, Akhtar MJ, Bragazza L, Buttler A (2017) Nitrogen-enriched compost application combined with plant growth promoting rhizobacteria (PGPR) improves seed quality and nutrient use efficiency of sunflower. J Plant Nutr Soil Sci 180:464–473. https://doi.org/10.1002/jpln.201600615

  • Arkhipova T, Prinsen E, Veselov S, Martinenko E, Melentiev A, Kudoyarova G (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7:4250–4259

    Article  Google Scholar 

  • Baltrus DA (2017) Adaptation, specialization, and coevolution within phytobiomes. Curr Opin Plant Biol 38:109–116

    Article  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria/plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, UK, pp 103–115

    Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:1–16

    Article  CAS  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Brewin NJ (1991) Development of the legume root nodule. Annu Rev Cell Biol 7:191–226

    Article  CAS  PubMed  Google Scholar 

  • Buttimer C, McAuliffe O, Ross RP, Hill C, O’Mahony J, Coffey A (2017) Bacteriophages and bacterial plant diseases. Front Microbiol 8:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Chan K-G, Atkinson S, MatheeK SamC-K, ChhabraSR Camara M et al (2011) Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiol 11:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H-X, Haudenshield JS, Bowen CR, Hartman GL (2017) Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity. Front Microbiol 8:519

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Front Microbiol 6:780

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips TC, Ivens A et al (2014) Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci USA 111:4280–4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts TS, GasparriniAJ Dantas G (2017) Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 15:422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cytryn E, Markiewicz Z, Popowska M (2017) Antibiotics and antibiotics resistance genes dissemination in soils, pp 151–190 In: Hashmi M, Strezov V, Varma A (eds) Antibiotics and antibiotics resistance genes in soils, vol 51. Springer, Cham

    Google Scholar 

  • Dal Cortivo C, Barion G, VisioliG Mattarozzi M, Mosca G, Vamerali T (2017) Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: assessment of plant-microbe interactions by ESEM. Agric Ecosyst Environ 247:396–408. https://doi.org/10.1016/j.agee.2017.07.006

    Article  CAS  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al. (2020a) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020b) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosyst 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016

  • Di Salvo LP, Cellucci GC, Carlino ME, García de Salamone IE (2018) Plant growth promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays L.) 6 challenges, regulations and future actions in biofertilizers in the European grain yield and modified rhizosphere microbial communities. Appl Soil Ecol 126:113–120. https://doi.org/10.1016/j.apsoil.2018.02.010

    Article  Google Scholar 

  • Ferreira CMH, Soares HMVM, Soares EV (2019) Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.04.225

  • Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  PubMed  Google Scholar 

  • García-Fraile P, Menéndez E, Celador-Lera L, Díez-Méndez A, Jiménez-Gómez A, Marcos-García M et al (2017) Bacterial probiotics: a truly green revolution, pp 131–162. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore

    Google Scholar 

  • Glick BR (2015) Introduction to plant growth-promoting bacteria. In: Glick BR (ed) beneficial plant bacterial interactions. Springer, pp 1–28

    Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339. https://doi.org/10.1007/s10658-007-9162-4

    Article  CAS  Google Scholar 

  • Gray E, Smith D (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Güneş A, Turan M, Güllüce M, Şahin F (2014) Nutritional content analysis of plant growth-promoting rhizobacteria species. Eur J Soil Biol 60:88–97

    Article  CAS  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al. (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

  • Innerebner G, KniefC Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77:3202–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Gómez A, Menéndez E, Flores-Félix JD, García-Fraile P, Mateos PF, Rivas R (2016) Effective colonization of spinach root surface by Rhizobium pp: 109–122. In: González-Andrés F, James E (eds) Biological nitrogen fixation and beneficial plant-microbe interaction. Springer Cham

    Google Scholar 

  • Kang Y, Shen M, **a D, Ye K, Zhao Q, Hu J (2017) Caution of intensified spread of antibiotic resistance genes by inadvertent introduction of beneficial bacteria into soil. Acta Agr Scand B-SP 67:576–582

    Google Scholar 

  • Kao C, Chen S, Chen Y, LinH Chen Y (2003) Detection of Burkholderia pseudomallei in rice fields with PCR-based technique. Folia Microbiol 48:521–524

    Article  CAS  Google Scholar 

  • Kaur T, Jasrotia S, Ohri P, Manhas RK (2016) Evaluation of in vitro and in vivo nematicidal potential of a multifunctional streptomycete, Streptomyces hydrogenans strain DH16 against Meloidogyne incognita. Microbiol Res 192:247–252

    Article  PubMed  Google Scholar 

  • Kierul K, Voigt B, Albrecht D, Chen X-H, Carvalhais LC, Borriss R (2015) Influence of root exudates on the extracellular proteome of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Microbiology 161:131–147

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382

    Article  Google Scholar 

  • Kloepper J, Schroth M, Miller T (1980a) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathol 70:1078–1082

    Google Scholar 

  • Kloepper JW, LeongJ, TeintzeM, SchrothMN (1980b) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Google Scholar 

  • Koskiniemi S, Pränting M, Gullberg E, Näsvall J, Andersson DI (2011) Activation of cryptic aminoglycoside resistance in Salmonella enterica. Mol Microbiol 80:1464–1478

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M et al (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31:43–75. https://doi.org/10.1016/S1002-0160(20)60057-1

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23: https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al. (2019) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

  • Kumar M, Yadav AN, Saxena R, Paul D, Tomar RS (2021) Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatal Agric Biotechnol 31: https://doi.org/10.1016/j.bcab.2020.101883

    Article  Google Scholar 

  • Kundan R, Pant G, JadonN AgrawalP (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fert Pesti 6:9

    Google Scholar 

  • Kuzmicheva YV, Shaposhnikov AI, Petrova SN, Makarova NM, Tychinskaya IL, Puhalsky JV, Parahin NV, Tikhonovich IA, Belimov AA (2017) Variety specific relationships between effects of rhizobacteria on root exudation, growth and nutrient uptake of soybean. Plant Soil 419:83–96. https://doi.org/10.1007/s11104-017-3320-z

    Article  CAS  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lally RD, Galbally P, Moreira AS, Spink J, Ryan D, Germaine KJ, Dowling DN (2017) Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.02193

  • Le TA, Pék Z, TakácsS, Neményi A, Daood HG,Helyes L (2018) The effect of plant growth promoting rhizobacteria on the water-yield relationship and carotenoid production of processing tomatoes. Hortscience 53:816–822. https://doi.org/10.21273/hortsci13048-18

  • Li K, Ramakrishna W (2011) Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J Hazard Mater 189:531–539

    Article  CAS  Google Scholar 

  • Linus LO, Hanson C, Alolga RN, Zhou W, Qi L (2017) Targeting the key factors of inflammation in cancer: plant intervention. Int J Clin Exp Med 10:15834–15865

    Google Scholar 

  • Ma M, Jiang X, Wang Q, Guan D, LiL, Ongena M, Li J (2018) Isolation and identification of PGPR strain and its effect on soybean growth and soil bacterial community composition. Int J Agric Biol 20:1289–1297. https://doi.org/10.17957/ijab/15.0627

  • Maheshwari R, Bhutani N, Suneja P (2019) Screening and characterization of siderophore producing endophytic bacteria from Cicer arietinum and Pisum sativum plants. J Appl Biol Biotechnol 7:7–14

    Google Scholar 

  • Marcia B, Raquel P-B, Beatriz U, Fernando G-A (2019) Challenges, regulations and future actions in biofertilizers in the European agriculture: From the lab to the field. In: Zúñiga-Dávila D et al (eds) Microbial probiotics for agricultural systems, sustainability in plant and crop protection. Springer Nature Switzerland AG 2019. https://doi.org/10.1007/978-3-030-17597-9_6

  • Menendez E, Garcia-Fraile P (2017) Plant probiotic bacteria: solutions to feed the world. AIMS Microbiol 3:502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal S, Halder SK, Yadav AN, Mondal KC (2020) Microbial consortium with multifunctional plant growth promoting attributes: future perspective in agriculture. In: Yadav AN, Rastegari AA, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture, volume 2: functional annotation and future challenges. Springer, Singapore, pp 219–254. https://doi.org/10.1007/978-981-15-3204-7_10

  • Müller DB, VogelC Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. Annu Rev Genet 50:211–234

    Article  PubMed  CAS  Google Scholar 

  • Olivares FL, Busato JG, de Paula AM, da Silva Lima L, Aguiar NO, Canellas LP (2017) Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chem Biol Technol Agric 4(1):30

    Article  CAS  Google Scholar 

  • Pastor-Bueis R, Mulas R, Gómez X, González-Andrés F (2017a) Innovative liquid formulation of digestates for producing a biofertilizer based on Bacillus siamensis: field testing on sweet pepper. J Plant Nutr Soil Sci 180:748–758. https://doi.org/10.1002/jpln.201700200

    Article  CAS  Google Scholar 

  • Pastor-Bueis R, MulasR GómezX, González-Andrés F (2017b) Innovative liquid formulation of digestates for producing a biofertilizer based on Bacillus siamensis: field testing on sweet pepper. J Plant Nutr Soil Sc 180:748–758

    Article  CAS  Google Scholar 

  • Peitl DC, Araujo FA, Gonçalves RM, Santiago DC, Sumida CH, Balbi-Peña MI (2017) Biological control of tomato bacterial spot by saprobe fungi from semi-arid areas of northeastern Brazil. Semin Cienc Agrar 38:1251–1263

    Article  Google Scholar 

  • Peix A, Rivas-Boyero A, MateosP Rodriguez-Barrueco C, Martınez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, Dantas G et al. (2015) Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One 10

    Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D, Cerasale D, Stanley RC, Perlman R, Newman EM, Brent LC et al (2012) Annual vs. perennial grain production. Agric Ecosyst Environ 161:1–9

    Article  Google Scholar 

  • Prasad S, Malav LC, Choudhary J, Kannojiya S, Kundu M, Kumar S et al. (2021) Soil Microbiomes for Healthy Nutrient Recycling. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 1–21. https://doi.org/10.1007/978-981-15-6949-4_1

  • Pretali L, BernardoL Butterfield TS, TrevisanM LuciniL (2016) Botanical and biological pesticides elicit a similar induced systemic response in tomato (Solanum lycopersicum) secondary metabolism. Phytochemistry 130:56–63

    Article  CAS  PubMed  Google Scholar 

  • Quirino B, Candido E, Campos P, Franco O, Krüger R (2010) Proteomic approaches to study plant–pathogen interactions. Phytochemistry 71:351–362

    Article  CAS  PubMed  Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507

    Article  PubMed  PubMed Central  Google Scholar 

  • Radzki W, Mañero FG, Algar E, GarcíaJL García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al. (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

  • Ramakrishna W, YadavR Li K (2019) Plant growth promoting bacteria in agriculture: two sides of a coin. Appl Soil Ecol 138:10–18

    Article  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107. https://doi.org/10.1007/s10482-020-01429-y

    Article  CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al. (2019a) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

  • Rana KL, Kour D, Yadav AN (2019b) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rebollar EA, Antwis RE, Becker MH, Belden LK, Bletz MC, Brucker RM et al (2016) Using ‘omics’ and integrated multi-omics approaches to guide probiotic selection to mitigate chytridiomycosis and other emerging infectious diseases. Front Microbiol 7:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M Dangar TK, Mohanty S Tuteja N (2014) Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma 251:943–953

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanta N, Schwinghamer T, Backer R, Allaire SE, Teshler I, Vanasse A, Whalen J, Baril B, Lange S, MacKay J, Zhou X, Smith DL (2016) Biochar and plant growth promoting rhizobacteria effects on switchgrass (Panicum virgatum cv. Cave-in-rock) for biomass production in southern Québec depend on soil type and location. Biomass Bioenergy 95:167–173. https://doi.org/10.1016/j.biombioe.2016

  • Sharaff MS, Subrahmanyam G, Kumar A, Yadav AN (2020) Mechanistic understanding of root-microbiome interaction for sustainable agriculture in polluted soils. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 61–84. https://doi.org/10.1016/B978-0-12-820526-6.00005-1

  • Sharma S, KulkarniJ JhaB (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 7:1600

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 387–402. https://doi.org/10.1007/978-981-15-6949-4_16

  • Silva LR, Azevedo J, Pereira MJ, Carro L, Velazquez E, Peix A et al (2014) Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness. J Agric Food Chem 62:557–564

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, VanderleydenJ Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Stamenković S, Beškoski V, Karabegović I, Lazić M, Nikolić N (2018) Microbial fertilizers: a comprehensive review of current findings and future perspectives. Span J Agric Res 16 https://doi.org/10.5424/sjar/2018161-12117

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity: vol. 1: research perspectives. Springer, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

  • Suyal DC, Soni R, Yadav AN, Goel R (2021) Cold adapted microorganisms: survival mechanisms and applications. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, pp 177–192

    Google Scholar 

  • Tejera N, LluchC Martinez-Toledo M, Gonzalez-Lopez J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270:223–232

    Article  CAS  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

  • TimmuskS El-Daim IAA, CopoloviciL TanilasT, KännasteA Behers L et al (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE 9:

    Article  CAS  Google Scholar 

  • TimmuskS Kim S-B, NevoE Abd El, Daim I, EkB Bergquist J et al (2015) Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance. Front Microbiol 6:387

    Google Scholar 

  • TimmuskS WagnerEGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    Article  Google Scholar 

  • Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN (2020) Phytohormones producing fungal communities: metabolic engineering for abiotic stress tolerance in crops. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer, Cham, pp 1–25. https://doi.org/10.1007/978-3-030-45971-0_8

  • Tiwari P, Bajpai M, Singh LK, Yadav AN, Bae H (2021) Portraying fungal mechanisms in stress tolerance: perspective for sustainable agriculture. In: Yadav AN (ed) Recent trends in mycological research: volume 1: agricultural and medical perspective. Springer International Publishing, Cham, pp 269–291. https://doi.org/10.1007/978-3-030-60659-6_12

  • Trewavas A (1981) How do plant growth substances work? Plant Cell Environ 4:203–228

    Google Scholar 

  • Trienekens J, Zuurbier P (2008) Quality and safety standards in the food industry, developments and challenges. Int J Prod Econ 113:107–122

    Google Scholar 

  • TrivediP, PandeyA, Palni LMS (2012) Bacterial inoculants for field applications under mountain ecosystem: present initiatives and future prospects. Pp: 15–44. In: Maheshwari D (eds) Bacteria in agrobiology: plant probiotics. Springer Berlin, Heidelberg

    Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  CAS  PubMed  Google Scholar 

  • Van Goethem MW, Pierneef R, Bezuidt OK, Van De Peer Y, Cowan DA, Makhalanyane TP (2018) A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6:40

    Google Scholar 

  • Vayssières J-F, Goergen G, Lokossou O, Dossa P, Akponon C (2009) A new Bactrocera species in Benin among mango fruit fly (Diptera: Tephritidae) species. Acta Hortic 581–588

    Google Scholar 

  • Verhagen BW, Glazebrook J, Zhu T, Chang H-S, Van Loon L, Pieterse CM (2004) The transcriptome of rhizobacteria-induced systemic resistance in arabidopsis. Mol Plant-Microbe Interact 17:895–908

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, volume 2: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

  • Wallenstein MD (2017) Managing and manipulating the rhizosphere microbiome for plant health: a systems approach. Rhizosphere 3:230–232

    Article  Google Scholar 

  • Wani SA, ChandS AliT (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Res J 1:35–38

    Article  Google Scholar 

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9:1–4. https://doi.org/10.7324/jabb.2021.91ed

    Article  Google Scholar 

  • Yadav AN, Kaur T, Devi R, Kour D, Yadav N (2021a) Biodiversity and biotechnological applications of extremophilic microbiomes: current research and future challenges. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, pp 278–290. https://doi.org/10.1201/9780429328633-16

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020a) Plant microbiomes for sustainable agriculture. Springer, Cham

    Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2021b) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Yaish MW, Al-Lawati A, Jana GA, Patankar HV, Glick BR (2016) Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One 11

    Google Scholar 

  • Yanni YG, Dazzo FB, Squartini A, Zanardo M, Zidan MI, Elsadany AEY (2016) Assessment of the natural endophytic association between Rhizobium and wheat and its ability to increase wheat production in the Nile delta. Plant Soil 407:367–383

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, El-Fattah FKA, Squartini A, Corich V, Giacomini A et al (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28:845–870

    Article  CAS  Google Scholar 

  • Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F (2011) Growth, nutrient uptake, and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. Hort Sci 46:932–936

    Google Scholar 

  • Yu J-G, Lim J-A, Song Y-R, Heu S, Kim GH, Koh YJ et al (2016) Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. J Microbiol Biotechnol 26:385–393

    Article  CAS  PubMed  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    Article  CAS  PubMed  Google Scholar 

  • ZhangC KongF (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhi Y, WuQ XuY (2017) Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Sci Rep 7:40976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zia, R., Shuja, M.N., Ali, M., Afzal, M.S. (2021). Plant Probiotics: Technical Challenges and Emerging Solutions for Enhancing Food Crops. In: Yadav, A.N. (eds) Soil Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-73507-4_13

Download citation

Publish with us

Policies and ethics

Navigation