Emerging Significance of Rhizospheric Probiotics and Its Impact on Plant Health: Current Perspective Towards Sustainable Agriculture

  • Chapter
  • First Online:
Probiotics and Plant Health

Abstract

Plants act as a shelter for vast numbers of microorganisms known as plant microbiome which is the key to plant health. Microbial population residing in plants interacts with plants through a series of complex mechanism. The plant microbe interactions can be beneficial, neutral or detrimental depending upon the nature of microbiome in the plant. Plant roots and rhizosphere are the most populated regions of plant where microbial activity is highest due to the secretion of bioactive compounds from roots. The beneficial soil microorganisms are also known as plant probiotics and have the potential to improve plant health and fitness both in natural and adverse environmental conditions. The microorganism which acts as potential probiotics utilized for the manufacturing of biofertilizers because they serve in promoting plant growth and it is now possible to formulate any type of probiotics, because of their common physiological characters. In the present chapter, the main focus is given to the rhizospheric microbiome which functions as plant probiotics and the importance of rhizospheric probiotics in plant growth promotion during stressed conditions. The chapter also includes the details for the delivery of successful biofertilizers by combining various probiotics and guidelines for their registration for providing a safe and efficient biofertilizer in the market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adeleke RA, Cloete TE, Bertrand A, Khasa DP (2012) Iron ore weathering potentials of ectomycorrhizal plants. Mycorrhiza 22:535–544

    Article  CAS  PubMed  Google Scholar 

  • Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth. Plant Signal Behav 7:1–7

    Article  CAS  Google Scholar 

  • Bardi L, Malusà E (2012) Drought and nutritional stresses in plant: alleviating role of rhizospheric microorganisms. In: Haryana N, Punj S (eds) Abiotic stress: new research. Nova Science Publishers Inc, Hauppauge, pp 1–57

    Google Scholar 

  • Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Barr M, East AK, Leonard M, Mauchline TH, Poole PS (2008) In vivo expression technology (IVET) selection of genes of Rhizobium leguminosarum biovar viciae A34 expressed in the rhizosphere. FEMS Microbiol Lett 282:219–227

    Article  CAS  PubMed  Google Scholar 

  • Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743

    Article  CAS  Google Scholar 

  • Bashan Y (1998) Inoculants for plant growth promoting bacteria for use in agriculture. Adv Biotechnol 16:729–770

    Article  CAS  Google Scholar 

  • Belimov AA, Kojemiakov AP, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 173:29–37

    Article  CAS  Google Scholar 

  • Bennett PC, Rogers JR, Choi WJ (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233

    Article  CAS  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    Article  CAS  PubMed  Google Scholar 

  • Buckling A, Harrison F, Vos M, Brockhurst MA, Gardner A, West SA, Griffin A (2007) Siderophore-mediated cooperation and virulence in Pseudomonas Aeruginosa. FEMS Microbiol Ecol 62:135–141

    Article  CAS  PubMed  Google Scholar 

  • Buee M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    Article  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Calvaruso C, Turpault MP, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microbial Ecol 54:567–577

    Article  Google Scholar 

  • Cartieaux F, Contesto C, Gallou A et al (2008) Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp. strain ORS278 and Pseudomonas syringae pv. Tomato DC3000 leads to complex transcriptome changes. Mol Plant-Microbe Interact 21:244–259

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650

    Article  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    Article  CAS  PubMed  Google Scholar 

  • Chernin L, Toklikishvili N, Ovadis M, Kim S, Ben-Ari J, Khmel I, Vainstein A (2011) Quorum-sensing quenching by rhizobacterial volatiles. Environ Microbiol Rep 3:698–704

    Article  CAS  PubMed  Google Scholar 

  • Collignon C, Uroz S, Turpault MP, Frey-Klett P (2011) Seasons differently impact the structure of mineral weathering bacterial communities in beech and spruce stands. Soil Biol Biochem 43:2012–2022

    Article  CAS  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci U S A 92:4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz-Hernandez A, Tomasini-Campocosio A, Perez-Flores L, Fernandez-Perrino F, Gutierrez-Rojas M (2012) Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 363:261–270

    Google Scholar 

  • De Freitas JR, Gupta VVS, Germida JJ (1993) Influence of Pseudomonas syringae R 25 and P. putida R 105 on the growth and N2 fixation (ARA) of pea (Pisum sativum L.) and field bean (Phaseolus vulgaris L.) Biol Fertil Soils 16:215–220

    Article  Google Scholar 

  • De Vleesschauwer D, Hofte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281

    Article  CAS  Google Scholar 

  • DeAngelis KM, Ji PS, Firestone MK, Lindow SE (2005) Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere. Appl Environ Microbiol 71:8537–8547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178

    Article  CAS  PubMed  Google Scholar 

  • Demoling F, Figueroa D, Baath E (2007) Comparison of factors limiting bacterial growth in different soils. Soil Biol Biochem 39:2485–2495

    Article  CAS  Google Scholar 

  • Desai S (2016) Challenges in regulation and registration of biopesticides: an overview. In: Microbial inoculants in sustainable agricultural productivity. Springer, India, pp 301–308

    Chapter  Google Scholar 

  • Dodd IC, Perez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • El-Komy HMA (2005) Co-immobilization of A. lipoferum and B. megaterium for plant nutrition. Food Technol Biotechnol 43(1):19–27

    Google Scholar 

  • Fages J (1992) An industrial view of Azospirillum inoculants: formulation and application technology. Symbiosis 13:15–26

    Google Scholar 

  • FAO (1988) Guidelines on the registration of biological pest control agent. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ferluga S, Venturi V (2009) OryR is a LuxR-family protein involved in inter kingdom signaling between pathogenic Xanthomonas oryzae pv. Oryzae and rice. J Bacteriol 191:890–897

    Article  CAS  PubMed  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen fixing bacteria associated with leguminous and non leguminous pants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13:1790–1799

    Article  CAS  PubMed  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Geurts R, Lillo A, Bisseling T (2012) Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis. Curr Opin Plant Biol 15:438–443

    Article  PubMed  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Guimarães AA, Jaramillo PMD, Nóbrega RSA, Florentino LA, Silva KB, de Souza Moreira FM (2012) Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. Appl Environ Microbiol 78(18):6726–6733

    Article  CAS  Google Scholar 

  • Gupta AK (2004) The complete technology book on biofertilizers and organic farming. National Institute of Industrial Research Press, India

    Google Scholar 

  • Hawkes CV, DeAngelis KM, Firestone MK (2007) Root interactions with soil microbial communities and processes. In: Cardon Z, Whitbeck J (eds) The Rhizosphere. Elsevier, New York, pp 1–3

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • He Z, Gentry TJ, Schadt CW et al (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77

    Article  CAS  PubMed  Google Scholar 

  • Herron PM, Gage DJ, Cardon ZG (2010) Micro-scale water potential gradients visualized in soil around plant root tips using microbiosensors. Plant Cell Environ 33:199–210

    Article  CAS  PubMed  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Marschner P (2006) Rhizosphere– perspectives and challenges – a tribute to Lorenz Hiltner. Plant Soil 283:vii–viii

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hitbold AE, Thurlow N, Skipper HD (1980) Evaluation of commercial soybean inoculants by various techniques. Agron J 72:675–681

    Article  Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416

    Article  CAS  PubMed  Google Scholar 

  • Hol WHG, de Boer W, Termorshuizen AJ et al (2010) Reduction of rare soil microbes modifies plant-herbivore interactions. Ecol Lett 13:292–301

    Article  PubMed  Google Scholar 

  • Insam H, Seewald MSA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • Jamalizadeh M, Etebarian HR, Aminian H et al (2010) Biological control of Botrytis mali on apple fruit by use of Bacillus bacteria, isolated from the rhizosphere of wheat. Arch Phytopathol Plant Protect 43:1836–1845

    Article  Google Scholar 

  • Jensen LE, Nybroe O (1999) Nitrogen availability to Pseudomonas fluorescens DF57 is limited during decomposition of barley straw in bulk soil and in the barley rhizosphere. Appl Environ Microbiol 65:4320–4328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia Brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Jogler C, Waldmann J, Huang XL, Jogler M, Glockner FO, Mascher T, Kolter R (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 194:6419–6430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson NC, Graham JH (2013) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363:411–419

    Article  CAS  Google Scholar 

  • Jones D, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6

    Article  CAS  Google Scholar 

  • Jorquera MA, Shaharoona B, Nadeem SM, de la Luz Mora M, Crowley DE (2012) Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microb Ecol 64:1008–1017

    Article  PubMed  Google Scholar 

  • Kawasaki A, Watson ER, Kertesz MA (2012) Indirect effects of polycyclic aromatic hydrocarbon contamination on microbial communities in legume and grass rhizospheres. Plant Soil 358:169–182

    Article  CAS  Google Scholar 

  • Knief C, Delmotte N, Chaffron S et al (2011) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koch B, Worm J, Jensen LE, Hojberg O, Nybroe O (2001) Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil. Appl Environ Microbiol 67:3363–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite – what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Kragelund L, Hosbond C, Nybroe O (1997) Distribution of metabolic activity and phosphate starvation response of lux-tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Appl Environ Microbiol 63:4920–4928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Kulakova AN, Kulakov LA, McGrath JW, Quinn JP (2009) The construction of a whole-cell biosensor for phosphonoacetate, based on the LysR-like transcriptional regulator PhnR from Pseudomonas fluorescens 23F. Microb Biotechnol 2:234–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leahy J, Mendelsohn M, Kough J, Jones R, Berckes N (2014) Biopesticide oversight and registration at the U.S. Environmental Protection Agency. In: Coats JR et al (eds) Biopesticides: state of the art and future opportunities. ACS Symposium Series, American Chemical Society, Washington

    Google Scholar 

  • Leininger S, Urich T, Schloter M et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Lemanceau P, Expert D, Gaymard F, Bakker P, Briat JF (2009) Role of iron in plant–microbe interactions. Adv Bot Res 51:491–549

    Article  CAS  Google Scholar 

  • Leveau JHJ, Uroz S, de Boer W (2010) The bacterial genus Collimonas: mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environ Microbiol 12:281–292

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Loh J, Pierson EA, Pierson LS, Stacey G, Chatterjee A (2002) Quorum sensing in plant-associated bacteria. Curr Opin Plant Biol 5:285–290

    Article  CAS  PubMed  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupwayi NZ, Olsen PE, Sonde ES et al (2000) Inoculant quality and its evaluation. Field Crop Res 65:259–270

    Article  Google Scholar 

  • Lynch JM (1990) The Rhizosphere. John Wiley, Sons, New York

    Google Scholar 

  • Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S (2012) Mineral-microbe interactions: biotechnological potential of bioweathering. J Biotechnol 157:473–481

    Article  CAS  PubMed  Google Scholar 

  • Mark GL, Dow JM, Kiely PD et al (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe–plant interactions. Proc Natl Acad Sci U S A 102:17454–17459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis – model and research methods. Soil Biol Biochem 43:883–894

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Meeting FB (1992) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New York

    Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Paolina G, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD Jr (eds) Arbuskular mycorrhizas: physiology and function. Kluwer Academic Publishers, London, pp 3–18

    Chapter  Google Scholar 

  • Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi K, Ghalavand A, Aghaalikhani M, Sohrabi Y, Heidari GR (2010) Impressibility of chickpea seed quality from different systems of increasing soil fertility. Electron J Crop Prod 3(1):103–119

    Google Scholar 

  • Mohammadi K, Ghalavand A, Aghaalikhani M, Heidari GR, Sohrabi Y (2011) Introducing the sustainable soil fertility system for chickpea (Cicer arietinum L). Afr J Biotechnol 10(32):6011–6020

    Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309

    Article  CAS  PubMed  Google Scholar 

  • OECD (1996) Date requirements for registration of biopesticides in OECD member countries: survey results, environment monograph no. 106. Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  • OECD (2002) Consensus document on information used in assessment of environmental applications involving baculoviruses. Series on harmonisation of regulatory oversight in biotechnology no. 20. ENV/JM/MONO (2002)1 OECD. Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  • Owen D, Williams AP, Griffi th GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Pineda A, Zheng S-J, van Loon JJA, Pieterse CMJ, Dicke M (2010) Hel** plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Prabakaran J, Ravi KB (1991) Interaction effect of A. Brasilense and Pseudomonas sp. A phosphate solubilizer on the growth of Zea mays. In: Microbiology Abstracts, XXXI Annual Conference of the Association of Microbiologists of India, TNAU, Coimbatore, January 23–26, p 109

    Google Scholar 

  • Qiang X, Weiss M, Kogel KH, Schafer P (2012) Piriformospora indica a mutualistic basidiomycete with an exceptionally large plant host range. Mol Plant Pathol 13:508–518

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers J, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and pathogenic soil bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Radhakrishnan KC (1996) Role of biofertilizers in cotton productivity. In: National seminar biofertilizer production problem and constraints, TNAU, Coimbatore, January 24–25, p 17

    Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257

    Article  CAS  PubMed  Google Scholar 

  • Ramos C, Molbak L, Molin S (2000) Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl Environ Microbiol 66:801–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raudales RE, Stone E, McSpadden Gardener BB (2009) Seed treatment with 2,4-diacetylphloroglucinol-producing pseudomonads improves crop health in low-pH soils by altering patterns of nutrient uptake. Phytopathology 99:506–511

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rochat L, Pechy-Tarr M, Baehler E, Maurhofer M, Keel C (2010) Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. Mol Plant-Microbe Interact 23:949–961

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rousk J, Baath E (2007) Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiol Ecol 62:258–267

    Article  CAS  PubMed  Google Scholar 

  • Sahu PK, Brahmaprakash GP (2016) Formulations of biofertilizers–approaches and advances. In: Microbial inoculants in sustainable agricultural productivity. Springer, India, pp 179–198

    Chapter  Google Scholar 

  • Salvioli A, Bonfante P (2013) Systems biology and “omics” tools: a cooperation for next-generation mycorrhizal studies. Plant Sci 203:107–114

    Article  PubMed  CAS  Google Scholar 

  • Shirley M, Avoscan L, Bernaud E, Vansuyt G, Lemanceau P (2011) Comparison of iron acquisition from Fe-pyoverdine by strategy I and strategy II plants. Botany 89:731–735

    Article  CAS  Google Scholar 

  • Siddikee M, Chauhan P, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier/Academic, New York/London/Burlington/San Diego, p 605

    Google Scholar 

  • Smyth SJ, McHughen A (2012) Regulation of genetically modified crops in USA and Canada: Canadian overview. In: Woznaik CA, McHughen A (eds) Regulation of agricultural biotechnology: the United States and Canada. Springer, Dordrecht, pp 15–34

    Chapter  Google Scholar 

  • Steindler L, Venturi V (2007) Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266:1–9

    Article  CAS  PubMed  Google Scholar 

  • Supanjani Han HS, Jung SJ, Lee KD (2006) Rock phosphate potassium and rock solubilizing bacteria as alternative sustainable fertilizers. Agron Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Tawaraya K, Naito M, Wagatsuma T (2006) Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr 29:657–665

    Article  CAS  Google Scholar 

  • Teixeira LCRS, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4:989–1001

    Article  PubMed  Google Scholar 

  • Tringe SGC, von Mering A, Kobayashi AA et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, He Z, Van Nostrand JD, Albrigo G, Zhou J, Wang N (2011) Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME J 6:363–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ullrich MS, Schergaut M, Boch J, Ullrich B (2000) Temperature-responsive genetic loci in the plant pathogen Pseudomonas syringae pv. Glycinea. Microbiology 146:2457–2468

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Buee M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288

    Article  CAS  PubMed  Google Scholar 

  • van de Mortel JE, de Vos RCH, Dekkers E et al (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Heijden MGA, Sanders IR (2002) Mycorrhizal ecology. Springer, New York

    Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant-Microbe Interact 20:441–447

    Article  CAS  PubMed  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma K, Sharma S, Kumar N, Upadhyay N, Devi S, Tiwari A. (2016) Contribution of Microbial Inoculants to Soil Carbon Sequestration and Sustainable Agriculture. In: Microbial Inoculants in Sustainable Agricultural Productivity. pp. Springer India. 101–113

    Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra R.K., Kumar V, Verma R, Upadhyay R.G., Pandey M, Sharma S, (2017) Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects. Frontiers in Plant Science 08

    Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Wagner GM (1997) Azolla. A review of its biology and utilisation. Bot Rev 63:1–26

    Article  Google Scholar 

  • Walker EL, Connolly EL (2008) Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11:530–535

    Article  CAS  PubMed  Google Scholar 

  • Wang HB, Zhang ZX, Li H et al (2011) Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res 10:932–940

    Article  CAS  PubMed  Google Scholar 

  • Weinert N, Piceno Y, Ding GC et al (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Ecological and biotechnological considerations in enhancing disease biocontrol. In: Vurro M, Gressel J, Butt T, Harman GE, Pilgeram A, St. Leger RJ, Nuss DL (eds) Enhancing biocontrol agents and handling risks, vol 339. IOP Press, Amsterdam, pp 43–51

    Google Scholar 

  • Wu L, Wang H, Zhang Z, Lin R, Lin W (2011) Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. PLoS One 6:e20611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yehuda Z, Shenker M, Hadar Y, Chen YN (2000) Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin. J Plant Nutr 23:1991–2006

    Article  CAS  Google Scholar 

  • Zaddy E, Perevolosky A, Okon Y (1993) Promotion of plant growth by inoculation with aggregated and single cell suspension by Azospirillum brasilense. Soil Biol Biochem 25:819–823

    Article  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Lynch DH, Smith DL (1995) Impact of low root temperatures in soybean [Glycine max (L.) Merr.] on nodulation and nitrogen fixation. Environ Exp Bot 35:279–285

    Article  Google Scholar 

  • Zhang F, Dashti N, Hynes R, Smith DL (1996) Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–460

    Article  Google Scholar 

  • Zhang H, Sun Y, **e X, Kim MS, Dowd SE, Par_e PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  CAS  PubMed  Google Scholar 

  • Zou C-S, Mo M-H, Y-Q G, Zhou J-P, Zhang K-Q (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Director MNNIT Allahabad for providing necessary facilities for execution of this work. The support rendered by MHRD sponsored project “Design and Innovation Centre” is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivesh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yadav, G. et al. (2017). Emerging Significance of Rhizospheric Probiotics and Its Impact on Plant Health: Current Perspective Towards Sustainable Agriculture. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics and Plant Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-3473-2_10

Download citation

Publish with us

Policies and ethics

Navigation