Part of the book series: Laboratory Animal Science and Medicine ((LASM,volume 1))

  • 911 Accesses

Abstract

This chapter is an overview of the current and growing knowledge of the genetics of laboratory rodents, specifically the mouse (Mus musculus) and the rat (Rattus norvegicus), the two main species used in biomedical research. We present basic information about Mendelian genetics and on the structure of the mouse and rat genomes, including the protein-coding DNA and the more intriguing non-coding DNA sequences, abundant in repetitive DNA, transposable elements and different types of genetic polymorphisms. Experiments should be performed with carefully designed and approved protocols, including the use of genetically defined animals. Thus, in this chapter we discussed the different types of genetically standardized laboratory strains and the aspects related to their genetic quality control. We also present the different types of genetically altered mice and rats, including spontaneous and chemically induced mutations, random transgenesis, targeted mutagenesis using embryonic stem cells and the novel genome editing techniques. It is very important for the veterinarians and technicians in charge of animal facilities, as well as for researchers and students using mouse and rat models that they have an available up-to-date information devoted to the genetics of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guenet JL, Benavides F, Panthier J, Montagutelli X. Genetics of the mouse. Berlin: Springer; 2015.

    Book  Google Scholar 

  2. Silver L. Mouse genetics. Concepts and applications. Oxford: Oxford University Press; 1995.

    Google Scholar 

  3. MacDonald WA, Mann MR. Epigenetic regulation of genomic imprinting from germ line to preimplantation. Mol Reprod Dev. 2014;81(2):126–40.

    Article  CAS  PubMed  Google Scholar 

  4. Michaud EJ, Bultman SJ, Klebig ML, van Vugt MJ, Stubbs LJ, Russell LB, et al. A molecular model for the genetic and phenotypic characteristics of the mouse lethal yellow (Ay) mutation. Proc Natl Acad Sci USA. 1994;91(7):2562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520–62.

    Article  CAS  PubMed  Google Scholar 

  6. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428(6982):493–521.

    Article  CAS  PubMed  Google Scholar 

  7. Doran AG, Wong K, Flint J, Adams DJ, Hunter KW, Keane TM. Deep genome sequencing and variation analysis of 13 inbred mouse strains defines candidate phenotypic alleles, private variation and homozygous truncating mutations. Genome Biol. 2016;17(1):167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lilue J, Doran AG, Fiddes IT, Abrudan M, Armstrong J, Bennett R, et al. Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nat Genet. 2018;50(11):1574–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, et al. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 2009;7(5):e1000112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nobrega MA, Zhu Y, Plajzer-Frick I, Afzal V, Rubin EM. Megabase deletions of gene deserts result in viable mice. Nature. 2004;431(7011):988–93.

    Article  CAS  PubMed  Google Scholar 

  11. Windsor AJ, Mitchell-Olds T. Comparative genomics as a tool for gene discovery. Curr Opin Biotechnol. 2006;17(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  12. Liao BY, Zhang J. Null mutations in human and mouse orthologs frequently result in different phenotypes. Proc Natl Acad Sci USA. 2008;105(19):6987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tollis M, Schiffman JD, Boddy AM. Evolution of cancer suppression as revealed by mammalian comparative genomics. Curr Opin Genet Dev. 2017;42:40–7.

    Article  CAS  PubMed  Google Scholar 

  14. Sakharkar MK, Perumal BS, Sakharkar KR, Kangueane P. An analysis on gene architecture in human and mouse genomes. In Silico Biol. 2005;5(4):347–65.

    CAS  PubMed  Google Scholar 

  15. Modrek B, Lee CJ. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet. 2003;34(2):177–80.

    Article  CAS  PubMed  Google Scholar 

  16. Choi E, Lee J, Oh J, Park I, Han C, Yi C, et al. Integrative characterization of germ cell-specific genes from mouse spermatocyte UniGene library. BMC Genomics. 2007;8:256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rouquier S, Blancher A, Giorgi D. The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci USA. 2000;97(6):2870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature. 2006;444(7118):499–502.

    Article  CAS  PubMed  Google Scholar 

  19. Cobb J, Busst C, Petrou S, Harrap S, Ellis J. Searching for functional genetic variants in non-coding DNA. Clin Exp Pharmacol Physiol. 2008;35(4):372–5.

    Article  CAS  PubMed  Google Scholar 

  20. Kuznetsova IS, Prusov AN, Enukashvily NI, Podgornaya OI. New types of mouse centromeric satellite DNAs. Chromosom Res. 2005;13(1):9–25.

    Article  CAS  Google Scholar 

  21. Bois PR. Hypermutable minisatellites, a human affair? Genomics. 2003;81(4):349–55.

    Article  CAS  PubMed  Google Scholar 

  22. Jeffreys AJ, Wilson V, Thein SL. Individual-specific ‘fingerprints’ of human DNA. Nature. 1985;316(6023):76–9.

    Article  CAS  PubMed  Google Scholar 

  23. Jeffreys AJ, Wilson V, Kelly R, Taylor BA, Bulfield G. Mouse DNA ‘fingerprints’: analysis of chromosome localization and germ-line stability of hypervariable loci in recombinant inbred strains. Nucleic Acids Res. 1987;15(7):2823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurtz TW, Montano M, Chan L, Kabra P. Molecular evidence of genetic heterogeneity in Wistar-Kyoto rats: implications for research with the spontaneously hypertensive rat. Hypertension. 1989;13(2):188–92.

    Article  CAS  PubMed  Google Scholar 

  25. Benavides F, Cazalla D, Pereira C, Fontanals A, Salaverri M, Goldman A, et al. Evidence of genetic heterogeneity in a BALB/c mouse colony as determined by DNA fingerprinting. Lab Anim. 1998;32(1):80–5.

    Article  CAS  PubMed  Google Scholar 

  26. Benavides F, Glasscock E, Coghlan LG, Stern MC, Weiss DA, Conti CJ. PCR-based microsatellite analysis for differentiation and genetic monitoring of nine inbred SENCAR mouse strains. Lab Anim. 2001;35(2):157–62.

    Article  CAS  PubMed  Google Scholar 

  27. Mashimo T, Voigt B, Tsurumi T, Naoi K, Nakanishi S, Yamasaki K, et al. A set of highly informative rat simple sequence length polymorphism (SSLP) markers and genetically defined rat strains. BMC Genet. 2006;7:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science. 2007;315(5813):848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adams DJ, Dermitzakis ET, Cox T, Smith J, Davies R, Banerjee R, et al. Complex haplotypes, copy number polymorphisms and coding variation in two recently divergent mouse strains. Nat Genet. 2005;37(5):532–6.

    Article  CAS  PubMed  Google Scholar 

  30. Graubert TA, Cahan P, Edwin D, Selzer RR, Richmond TA, Eis PS, et al. A high-resolution map of segmental DNA copy number variation in the mouse genome. PLoS Genet. 2007;3(1):e3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. She X, Cheng Z, Zollner S, Church DM, Eichler EE. Mouse segmental duplication and copy number variation. Nat Genet. 2008;40(7):909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Watkins-Chow DE, Pavan WJ. Genomic copy number and expression variation within the C57BL/6J inbred mouse strain. Genome Res. 2008;18(1):60–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet. 2007;8:241–59.

    Article  CAS  PubMed  Google Scholar 

  34. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8(12):973–82.

    Article  CAS  PubMed  Google Scholar 

  35. Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 2008;18(3):343–58.

    Article  CAS  PubMed  Google Scholar 

  36. Wade CM, Kulbokas EJ 3rd, Kirby AW, Zody MC, Mullikin JC, Lander ES, et al. The mosaic structure of variation in the laboratory mouse genome. Nature. 2002;420(6915):574–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ostertag EM, Kazazian HH Jr. Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35:501–38.

    Article  CAS  PubMed  Google Scholar 

  38. Sasaki T, Nishihara H, Hirakawa M, Fujimura K, Tanaka M, Kokubo N, et al. Possible involvement of SINEs in mammalian-specific brain formation. Proc Natl Acad Sci USA. 2008;105(11):4220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA. Mammalian mutagenesis using a highly mobile somatic Slee** Beauty transposon system. Nature. 2005;436(7048):221–6.

    Article  CAS  PubMed  Google Scholar 

  40. Wu SC, Meir YJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, et al. piggyBac is a flexible and highly active transposon as compared to slee** beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA. 2006;103(41):15008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jern P, Coffin JM. Effects of retroviruses on host genome function. Annu Rev Genet. 2008;42:709–32.

    Article  CAS  PubMed  Google Scholar 

  42. Stoye JP, Fenner S, Greenoak GE, Moran C, Coffin JM. Role of endogenous retroviruses as mutagens: the hairless mutation of mice. Cell. 1988;54(3):383–91.

    Article  CAS  PubMed  Google Scholar 

  43. Hughes AL, Welch R, Puri V, Matthews C, Haque K, Chanock SJ, et al. Genome-wide SNP ty** reveals signatures of population history. Genomics. 2008;92(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang J, Hunter KW, Gandolph M, Rowe WL, Finney RP, Kelley JM, et al. A high-resolution multistrain haplotype analysis of laboratory mouse genome reveals three distinctive genetic variation patterns. Genome Res. 2005;15(2):241–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, Beilharz EJ, et al. A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature. 2007;448(7157):1050–3.

    Article  CAS  PubMed  Google Scholar 

  46. Bryda EC, Riley LK. Multiplex microsatellite marker panels for genetic monitoring of common rat strains. J Am Assoc Lab Anim Sci. 2008;47(3):37–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nijman IJ, Kuipers S, Verheul M, Guryev V, Cuppen E. A genome-wide SNP panel for map** and association studies in the rat. BMC Genomics. 2008;9:95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mudge JM, Harrow J. Creating reference gene annotation for the mouse C57BL6/J genome assembly. Mamm Genome. 2015;26(9–10):366–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63.

    Article  CAS  PubMed  Google Scholar 

  50. Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 2011;9(1):e1000582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eppig JT. Mouse Genome Informatics (MGI) resource: genetic, genomic, and biological knowledgebase for the laboratory mouse. ILAR J. 2017;58(1):17–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shimoyama M, De Pons J, Hayman GT, Laulederkind SJ, Liu W, Nigam R, et al. The Rat Genome Database 2015: genomic, phenotypic and environmental variations and disease. Nucleic Acids Res. 2015;43(Database issue):D743–50.

    Article  CAS  PubMed  Google Scholar 

  53. Laulederkind SJF, Hayman GT, Wang SJ, Smith JR, Petri V, Hoffman MJ, et al. A primer for the Rat Genome Database (RGD). Methods Mol Biol. 1757;2018:163–209.

    Google Scholar 

  54. Morse HC 3rd. Origins of inbred mice. New York: Academic Press; 1978.

    Google Scholar 

  55. Rader K. Making mice: standardizing animals for American Biomedical Research, 1900–1955. Princeton: Princeton University Press; 2004.

    Book  Google Scholar 

  56. Moriwaki K, Shiroishi T, Yonekawa H. Genetics in wild mice: its application to biomedical research. Tokyo: Japan Scientific Societies Press; 1994.

    Google Scholar 

  57. Simecek P, Forejt J, Williams RW, Shiroishi T, Takada T, Lu L, et al. High-resolution maps of mouse reference populations. G3 (Bethesda). 2017;7(10):3427–34.

    Article  CAS  Google Scholar 

  58. Kuramoto T, Nakanishi S, Ochiai M, Nakagama H, Voigt B, Serikawa T. Origins of albino and hooded rats: implications from molecular genetic analysis across modern laboratory rat strains. PLoS One. 2012;7(8):e43059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peters H, Reifenberg K, Wedekind, D. Substrains of inbred strains. GV-SOLAS. 2013; Specialist Information.

    Google Scholar 

  60. Freeman HC, Hugill A, Dear NT, Ashcroft FM, Cox RD. Deletion of nicotinamide nucleotide transhydrogenase: a new quantitative trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes. 2006;55(7):2153–6.

    Article  CAS  PubMed  Google Scholar 

  61. Mattapallil MJ, Wawrousek EF, Chan CC, Zhao H, Roychoudhury J, Ferguson TA, et al. The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci. 2012;53(6):2921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kumar V, Kim K, Joseph C, Kourrich S, Yoo SH, Huang HC, et al. C57BL/6N mutation in cytoplasmic FMRP interacting protein 2 regulates cocaine response. Science. 2013;342(6165):1508–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Simon MM, Greenaway S, White JK, Fuchs H, Gailus-Durner V, Wells S, et al. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol. 2013;14(7):R82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet. 1997;16(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  65. Hermsen R, de Ligt J, Spee W, Blokzijl F, Schafer S, Adami E, et al. Genomic landscape of rat strain and substrain variation. BMC Genomics. 2015;16:357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Guenet JL, Benavides FJ. Mouse strains and genetic nomenclature. Curr Protoc Mouse Biol. 2011;1(1):213–38.

    PubMed  Google Scholar 

  67. Yalcin B, Fullerton J, Miller S, Keays DA, Brady S, Bhomra A, et al. Unexpected complexity in the haplotypes of commonly used inbred strains of laboratory mice. Proc Natl Acad Sci USA. 2004;101(26):9734–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, et al. Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet. 2011;43(7):648–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guenet JL, Bonhomme F. Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet. 2003;19(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  70. Schuster-Gossler K, Lee AW, Lerner CP, Parker HJ, Dyer VW, Scott VE, et al. Use of coisogenic host blastocysts for efficient establishment of germline chimeras with C57BL/6J ES cell lines. BioTechniques. 2001;31(5):1022–4. 6

    Article  CAS  PubMed  Google Scholar 

  71. Nadeau JH, Singer JB, Matin A, Lander ES. Analysing complex genetic traits with chromosome substitution strains. Nat Genet. 2000;24(3):221–5.

    Article  CAS  PubMed  Google Scholar 

  72. Bailey DW. Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation. 1971;11(3):325–7.

    Article  CAS  PubMed  Google Scholar 

  73. Shisa H, Lu L, Katoh H, Kawarai A, Tanuma J, Matsushima Y, et al. The LEXF: a new set of rat recombinant inbred strains between LE/Stm and F344. Mamm Genome. 1997;8(5):324–7.

    Article  CAS  PubMed  Google Scholar 

  74. Demant P. Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nat Rev Genet. 2003;4(9):721–34.

    Article  CAS  PubMed  Google Scholar 

  75. Burgio G, Szatanik M, Guenet JL, Arnau MR, Panthier JJ, Montagutelli X. Interspecific recombinant congenic strains between C57BL/6 and mice of the Mus spretus species: a powerful tool to dissect genetic control of complex traits. Genetics. 2007;177(4):2321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Burgio G, Baylac M, Heyer E, Montagutelli X. Genetic analysis of skull shape variation and morphological integration in the mouse using interspecific recombinant congenic strains between C57BL/6 and mice of the mus spretus species. Evolution. 2009;63(10):2668–86.

    Article  PubMed  Google Scholar 

  77. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet. 2004;36(11):1133–7.

    Article  CAS  PubMed  Google Scholar 

  78. Chesler EJ, Miller DR, Branstetter LR, Galloway LD, Jackson BL, Philip VM, et al. The Collaborative Cross at Oak Ridge National Laboratory: develo** a powerful resource for systems genetics. Mamm Genome. 2008;19(6):382–9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo RA, Baric RS, et al. Genetic analysis of complex traits in the emerging collaborative cross. Genome Res. 2011;21:1213–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Srivastava A, Morgan AP, Najarian ML, Sarsani VK, Sigmon JS, Shorter JR, et al. Genomes of the mouse Collaborative Cross. Genetics. 2017;206(2):537–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hartl DL. Genetic management of outbred laboratory rodent populations. Charles River Genetic Literature. 2001.

    Google Scholar 

  82. Poiley SM. A systematic method of breeder rotation for non-inbred laboratory animals colonies. Proc Anim Care Panel. 1960;10:159.

    Google Scholar 

  83. Schmitt AO, Bortfeldt R, Neuschl C, Brockmann GA. RandoMate: a program for the generation of random mating schemes for small laboratory animals. Mamm Genome. 2009;20(5):321–5.

    Article  PubMed  Google Scholar 

  84. Chia R, Achilli F, Festing MF, Fisher EM. The origins and uses of mouse outbred stocks. Nat Genet. 2005;37(11):1181–6.

    Article  CAS  PubMed  Google Scholar 

  85. Festing MF. Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development. Toxicol Pathol. 2010;38(5):681–90.

    Article  CAS  PubMed  Google Scholar 

  86. Yalcin B, Nicod J, Bhomra A, Davidson S, Cleak J, Farinelli L, et al. Commercially available outbred mice for genome-wide association studies. PLoS Genet. 2010;6(9):e1001085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Churchill GA, Gatti DM, Munger SC, Svenson KL. The diversity outbred mouse population. Mamm Genome. 2012;23(9–10):713–8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tuttle AH, Philip VM, Chesler EJ, Mogil JS. Comparing phenotypic variation between inbred and outbred mice. Nat Methods. 2018;15(12):994–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jackson IJ, Abbott CM. Mouse genetics and transgenics: a practical approach. Oxford: Oxford University Press; 2000.

    Google Scholar 

  90. Nagy A, Gertsenstein M, Vintersten K, Behringer R. Manipulating the mouse embryo, a laboratory manual. 3rd ed. New York: Cold Spring Harbor Press; 2003.

    Google Scholar 

  91. Koentgen F, Suess G, Naf D. Engineering the mouse genome to model human disease for drug discovery. Methods Mol Biol. 2010;602:55–77.

    Article  CAS  PubMed  Google Scholar 

  92. Guenet JL. Animal models of human genetic diseases: do they need to be faithful to be useful? Mol Gen Genomics. 2011;286(1):1–20.

    Article  CAS  Google Scholar 

  93. Perez CJ, Jaubert J, Guenet JL, Barnhart KF, Ross-Inta CM, Quintanilla VC, et al. Two hypomorphic alleles of mouse Ass1 as a new animal model of citrullinemia type I and other hyperammonemic syndromes. Am J Pathol. 2010;177(4):1958–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bao J, Perez CJ, Kim J, Zhang H, Murphy CJ, Hamidi T, et al. Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice. JCI Insight. 2018;3(16):e99767.

    Article  PubMed Central  Google Scholar 

  95. Russell WL, Kelly EM, Hunsicker PR, Bangham JW, Maddux SC, Phipps EL. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc Natl Acad Sci USA. 1979;76(11):5818–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Guenet JL. Chemical mutagenesis of the mouse genome: an overview. Genetica. 2004;122(1):9–24.

    Article  CAS  PubMed  Google Scholar 

  97. Gondo Y. Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet. 2008;9(10):803–10.

    Article  CAS  PubMed  Google Scholar 

  98. Nolan PM, Peters J, Strivens M, Rogers D, Hagan J, Spurr N, et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet. 2000;25(4):440–3.

    Article  CAS  PubMed  Google Scholar 

  99. Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, Marschall S, et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet. 2000;25(4):444–7.

    Article  CAS  PubMed  Google Scholar 

  100. Wang T, Bu CH, Hildebrand S, Jia G, Siggs OM, Lyon S, et al. Probability of phenotypically detectable protein damage by ENU-induced mutations in the Mutagenetix database. Nat Commun. 2018;9(1):441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Moran JL, Bolton AD, Tran PV, Brown A, Dwyer ND, Manning DK, et al. Utilization of a whole genome SNP panel for efficient genetic map** in the mouse. Genome Res. 2006;16(3):436–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  CAS  PubMed  Google Scholar 

  103. Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell. 1981;27(1 Pt 2):223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Costantini F, Lacy E. Introduction of a rabbit beta-globin gene into the mouse germ line. Nature. 1981;294(5836):92–4.

    Article  CAS  PubMed  Google Scholar 

  105. Gordon JW, Ruddle FH. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science. 1981;214(4526):1244–6.

    Article  CAS  PubMed  Google Scholar 

  106. Bonaparte D, Cinelli P, Douni E, Herault Y, Maas M, Pakarinen P, et al. FELASA guidelines for the refinement of methods for genoty** genetically-modified rodents: a report of the Federation of European Laboratory Animal Science Associations Working Group. Lab Anim. 2013;47(3):134–45.

    Article  CAS  PubMed  Google Scholar 

  107. Ballester M, Castello A, Ibanez E, Sanchez A, Folch JM. Real-time quantitative PCR-based system for determining transgene copy number in transgenic animals. BioTechniques. 2004;37(4):610–3.

    Article  CAS  PubMed  Google Scholar 

  108. Taketo M, Schroeder AC, Mobraaten LE, Gunning KB, Hanten G, Fox RR, et al. FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci USA. 1991;88(6):2065–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Furth PA, St Onge L, Boger H, Gruss P, Gossen M, Kistner A, et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci USA. 1994;91(20):9302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, et al. Germline competent embryonic stem cells derived from rat blastocysts. Cell. 2008;135(7):1299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McLellan MA, Rosenthal NA, Pinto AR. Cre-loxP-mediated recombination: general principles and experimental considerations. Curr Protoc Mouse Biol. 2017;7(1):1–12.

    Article  PubMed  Google Scholar 

  112. Feil S, Valtcheva N, Feil R. Inducible Cre mice. Methods Mol Biol. 2009;530:343–63.

    Article  CAS  PubMed  Google Scholar 

  113. West DB, Pasumarthi RK, Baridon B, Djan E, Trainor A, Griffey SM, et al. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines. Genome Res. 2015;25(4):598–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kaneko T, Mashimo T. Creating knockout and knockin rodents using engineered endonucleases via direct embryo injection. Methods Mol Biol. 2015;1239:307–15.

    Article  CAS  PubMed  Google Scholar 

  115. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325(5939):433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mashimo T. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Develop Growth Differ. 2014;56(1):46–52.

    Article  CAS  Google Scholar 

  117. Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol. 2013;31(1):23–4.

    Article  CAS  PubMed  Google Scholar 

  118. Tesson L, Remy S, Menoret S, Usal C, Thinard R, Savignard C, et al. Genome editing in rats using TALE nucleases. Methods Mol Biol. 2016;1338:245–59.

    Article  CAS  PubMed  Google Scholar 

  119. Pennisi E. The CRISPR craze. Science. 2013;341(6148):833–6.

    Article  CAS  PubMed  Google Scholar 

  120. Fernandez A, Josa S, Montoliu L. A history of genome editing in mammals. Mamm Genome. 2017;28(7–8):237–46.

    Article  CAS  PubMed  Google Scholar 

  121. Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh M, et al. Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep. 2014;4:4513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Guan Y, Shao Y, Li D, Liu M. Generation of site-specific mutations in the rat genome via CRISPR/Cas9. Methods Enzymol. 2014;546:297–317.

    Article  CAS  PubMed  Google Scholar 

  123. Shao Y, Guan Y, Wang L, Qiu Z, Liu M, Chen Y, et al. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat Protoc. 2014;9(10):2493–512.

    Article  CAS  PubMed  Google Scholar 

  124. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yoshimi K, Kaneko T, Voigt B, Mashimo T. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat Commun. 2014;5:4240.

    Article  CAS  PubMed  Google Scholar 

  126. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40–6.

    Article  CAS  PubMed  Google Scholar 

  128. Seruggia D, Fernandez A, Cantero M, Pelczar P, Montoliu L. Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Res. 2015;43(10):4855–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gu B, Posfai E, Rossant J. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat Biotechnol. 2018;36(7):632–7.

    Article  CAS  PubMed  Google Scholar 

  130. Chen S, Lee B, Lee AY, Modzelewski AJ, He L. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J Biol Chem. 2016;291(28):14457–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kobayashi T, Namba M, Koyano T, Fukushima M, Sato M, Ohtsuka M, et al. Successful production of genome-edited rats by the rGONAD method. BMC Biotechnol. 2018;18(1):19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Fairfield H, Srivastava A, Ananda G, Liu R, Kircher M, Lakshminarayana A, et al. Exome sequencing reveals pathogenic mutations in 91 strains of mice with Mendelian disorders. Genome Res. 2015;25(7):948–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Otsen M, Den Bieman M, Winer ES, Jacob HJ, Szpirer J, Szpirer C, et al. Use of simple sequence length polymorphisms for genetic characterization of rat inbred strains. Mamm Genome. 1995;6(9):595–601.

    Article  CAS  PubMed  Google Scholar 

  134. Gurumurthy CB, Joshi PS, Kurz SG, Ohtsuka M, Quadros RM, Harms DW, et al. Validation of simple sequence length polymorphism regions of commonly used mouse strains for marker assisted speed congenics screening. Int J Genomics. 2015;2015:735845.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Petkov PM, Ding Y, Cassell MA, Zhang W, Wagner G, Sargent EE, et al. An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res. 2004;14(9):1806–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Myakishev MV, Khripin Y, Hu S, Hamer DH. High-throughput SNP genoty** by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res. 2001;11(1):163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zurita E, Chagoyen M, Cantero M, Alonso R, Gonzalez-Neira A, Lopez-Jimenez A, et al. Genetic polymorphisms among C57BL/6 mouse inbred strains. Transgenic Res. 2011;20(3):481–9.

    Article  CAS  PubMed  Google Scholar 

  138. Mekada K, Abe K, Murakami A, Nakamura S, Nakata H, Moriwaki K, et al. Genetic differences among C57BL/6 substrains. Exp Anim. 2009;58(2):141–9.

    Article  CAS  PubMed  Google Scholar 

  139. Mekada K, Hirose M, Murakami A, Yoshiki A. Development of SNP markers for C57BL/6N-derived mouse inbred strains. Exp Anim. 2015;64(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  140. Zimdahl H, Nyakatura G, Brandt P, Schulz H, Hummel O, Fartmann B, et al. A SNP map of the rat genome generated from cDNA sequences. Science. 2004;303(5659):807.

    Article  CAS  PubMed  Google Scholar 

  141. Smits BM, Guryev V, Zeegers D, Wedekind D, Hedrich HJ, Cuppen E. Efficient single nucleotide polymorphism discovery in laboratory rat strains using wild rat-derived SNP candidates. BMC Genomics. 2005;6:170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Consortium S, Saar K, Beck A, Bihoreau MT, Birney E, Brocklebank D, et al. SNP and haplotype map** for genetic analysis in the rat. Nat Genet. 2008;40(5):560–6.

    Article  CAS  Google Scholar 

  143. Beckstead WA, Bjork BC, Stottmann RW, Sunyaev S, Beier DR. SNP2RFLP: a computational tool to facilitate genetic map** using benchtop analysis of SNPs. Mamm Genome. 2008;19(10–12):687–90.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wedekind D, Reifenberg K, Hedrich HJ. Genetic monitoring of inbred strains. In: Hedrich HJ, editor. The laboratory mouse. Boston: Elsevier; 2012. p. 621–37.

    Chapter  Google Scholar 

  145. Guenet JL, Benavides F. Genetic monitoring of laboratory rodents. In: Patrinos GP, Ansorge W, editors. Molecular diagnostics. 2nd ed. Oxford: Oxford Academic Press; 2010.

    Google Scholar 

  146. Reifenberg K, Hedrich H, Wedekind D, Howells N. Objective and methods of genetic monitoring of isogenic mouse and rat strains. GV-SOLAS Specialist Information. 2014.

    Google Scholar 

  147. Taft RA, Davisson M, Wiles MV. Know thy mouse. Trends Genet. 2006;22(12):649–53.

    Article  CAS  PubMed  Google Scholar 

  148. Reardon S. Lab mice’s ancestral ‘Eve’ gets her genome sequenced. Nature. 2017;551(7680):281.

    Article  CAS  PubMed  Google Scholar 

  149. Fahey JR, Katoh H, Malcolm R, Perez AV. The case for genetic monitoring of mice and rats used in biomedical research. Mamm Genome. 2013;24(3–4):89–94.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Didion JP, Buus RJ, Naghashfar Z, Threadgill DW, Morse HC 3rd, de Villena FP. SNP array profiling of mouse cell lines identifies their strains of origin and reveals cross-contamination and widespread aneuploidy. BMC Genomics. 2014;15:847.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Linder CC. The influence of genetic background on spontaneous and genetically engineered mouse models of complex diseases. Lab Anim (NY). 2001;30(5):34–9.

    CAS  Google Scholar 

  152. Doetschman T. Influence of genetic background on genetically engineered mouse phenotypes. Methods Mol Biol. 2009;530:423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hummel KP, Coleman DL, Lane PW. The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochem Genet. 1972;7(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  154. Dietrich WF, Lander ES, Smith JS, Moser AR, Gould KA, Luongo C, et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell. 1993;75(4):631–9.

    Article  CAS  PubMed  Google Scholar 

  155. Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science. 1995;269(5221):230–4.

    Article  CAS  PubMed  Google Scholar 

  156. Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D, et al. Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol. 2000;157(6):2151–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Freeman D, Lesche R, Kertesz N, Wang S, Li G, Gao J, et al. Genetic background controls tumor development in PTEN-deficient mice. Cancer Res. 2006;66(13):6492–6.

    Article  CAS  PubMed  Google Scholar 

  158. Calyjur PC, Almeida Cde F, Ayub-Guerrieri D, Ribeiro AF Jr, Fernandes Sde A, Ishiba R, et al. The mdx mutation in the 129/Sv background results in a milder phenotype: transcriptome comparative analysis searching for the protective factors. PLoS One. 2016;11(3):e0150748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Asamoto M, Hokaiwado N, Cho YM, Shirai T. Effects of genetic background on prostate and taste bud carcinogenesis due to SV40 T antigen expression under probasin gene promoter control. Carcinogenesis. 2002;23(3):463–7.

    Article  CAS  PubMed  Google Scholar 

  160. Dang R, Torigoe D, Suzuki S, Kikkawa Y, Moritoh K, Sasaki N, et al. Genetic background strongly modifies the severity of symptoms of Hirschsprung disease, but not hearing loss in rats carrying Ednrb(sl) mutations. PLoS One. 2011;6(9):e24086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Vanden Berghe T, Hulpiau P, Martens L, Vandenbroucke RE, Van Wonterghem E, Perry SW, et al. Passenger mutations confound interpretation of all genetically modified congenic mice. Immunity. 2015;43(1):200–9.

    Article  PubMed Central  CAS  Google Scholar 

  162. Stevens JC, Banks GT, Festing MF, Fisher EM. Quiet mutations in inbred strains of mice. Trends Mol Med. 2007;13(12):512–9.

    Article  CAS  PubMed  Google Scholar 

  163. Specht CG, Schoepfer R. Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci. 2001;2:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bourdi M, Davies JS, Pohl LR. Mispairing C57BL/6 substrains of genetically engineered mice and wild-type controls can lead to confounding results as it did in studies of JNK2 in acetaminophen and concanavalin A liver injury. Chem Res Toxicol. 2011;24(6):794–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085–8.

    Article  CAS  PubMed  Google Scholar 

  166. Wakeland E, Morel L, Achey K, Yui M, Longmate J. Speed congenics: a classic technique in the fast lane (relatively speaking). Immunol Today. 1997;18(10):472–7.

    Article  CAS  PubMed  Google Scholar 

  167. Markel P, Shu P, Ebeling C, Carlson GA, Nagle DL, Smutko JS, et al. Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet. 1997;17(3):280–4.

    Article  CAS  PubMed  Google Scholar 

  168. Wolfer DP, Crusio WE, Lipp HP. Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci. 2002;25(7):336–40.

    Article  CAS  PubMed  Google Scholar 

  169. Chen S, Kadomatsu K, Kondo M, Toyama Y, Toshimori K, Ueno S, et al. Effects of flanking genes on the phenotypes of mice deficient in basigin/CD147. Biochem Biophys Res Commun. 2004;324(1):147–53.

    Article  CAS  PubMed  Google Scholar 

  170. Brommage R, Liu J, Hansen GM, Kirkpatrick LL, Potter DG, Sands AT, et al. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res. 2014;2:14034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Brown SDM, Holmes CC, Mallon AM, Meehan TF, Smedley D, Wells S. High-throughput mouse phenomics for characterizing mammalian gene function. Nat Rev Genet. 2018;19(6):357–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mallon AM, Blake A, Hancock JM. EuroPhenome and EMPReSS: online mouse phenoty** resource. Nucleic Acids Res. 2008;36(Database issue):D715–8.

    CAS  PubMed  Google Scholar 

  173. de Angelis MH, Nicholson G, Selloum M, White J, Morgan H, Ramirez-Solis R, et al. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat Genet. 2015;47(9):969–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Paigen K, Eppig JT. A mouse phenome project. Mamm Genome. 2000;11(9):715–7.

    Article  CAS  PubMed  Google Scholar 

  175. Brown SD, Moore MW. The International Mouse Phenoty** Consortium: past and future perspectives on mouse phenoty**. Mamm Genome. 2012;23(9–10):632–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Koscielny G, Yaikhom G, Iyer V, Meehan TF, Morgan H, Atienza-Herrero J, et al. The International Mouse Phenoty** Consortium Web Portal, a unified point of access for knockout mice and related phenoty** data. Nucleic Acids Res. 2014;42(Database issue):D802–9.

    Article  CAS  PubMed  Google Scholar 

  177. Bradley A, Anastassiadis K, Ayadi A, Battey JF, Bell C, Birling MC, et al. The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome. 2012;23(9–10):580–6.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474(7351):337–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Meehan TF, Conte N, West DB, Jacobsen JO, Mason J, Warren J, et al. Disease model discovery from 3,328 gene knockouts by The International Mouse Phenoty** Consortium. Nat Genet. 2017;49(8):1231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Benavides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benavides, F., Guénet, JL. (2021). Rodent Genetics. In: Sánchez Morgado, J.M., Brønstad, A. (eds) Experimental Design and Reproducibility in Preclinical Animal Studies . Laboratory Animal Science and Medicine, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-66147-2_2

Download citation

Publish with us

Policies and ethics

Navigation