Practical Application of the 3Rs in Rodent Transgenesis

  • Protocol
  • First Online:
Transgenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2631))

Abstract

The principles of the 3Rs (replace, reduce, refine), as originally published by Russell and Burch, are internationally acclaimed guidelines for meeting ethical and welfare standards in animal experimentation. Genome manipulation is a standard technique in biomedical research and beyond. The goal of this chapter is to give practical advice on the implementation of the 3Rs in laboratories generating genetically modified rodents. We cover 3R aspects from the planning phase through operations of the transgenic unit to the final genome-manipulated animals. The focus of our chapter is on an easy-to-use, concise protocol that is close to a checklist. While we focus on mice, the proposed methodological concepts can be easily adapted for the manipulation of other sentient animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  2. Behringer R, Gertsenstein M, Nagy KV, Nagy A (2014) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press

    Google Scholar 

  3. Pease S, Saunders TL (2011) Advanced protocols for animal transgenesis: an ISTT manual. Springer, Berlin Heidelberg

    Book  Google Scholar 

  4. Hess SE, Rohr S, Dufour BD et al (2008) Home improvement: C57BL/6J mice given more naturalistic nesting materials build better nests. J Am Assoc Lab Anim Sci 47:25–31

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Birling M-C, Yoshiki A, Adams DJ et al (2021) A resource of targeted mutant mouse lines for 5,061 genes. Nat Genet 53:416–419. https://doi.org/10.1038/s41588-021-00825-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koentgen F, Lin J, Katidou M et al (2016) Exclusive transmission of embryonic stem cell-derived genome through the mouse germline. Genesis 54:326–333. https://doi.org/10.1002/dvg.22938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takeo T, Nakagata N (2015) Superovulation using the combined administration of inhibin antiserum and equine chorionic gonadotropin increases the number of ovulated oocytes in C57BL/6 female mice. PLoS One 10:e0128330. https://doi.org/10.1371/journal.pone.0128330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garrels W, Wedekind D, Wittur I et al (2018) Direct comparison of vasectomized males and genetically sterile Gapdhs knockout males for the induction of pseudopregnancy in mice. Lab Anim 52:365–372. https://doi.org/10.1177/0023677217748282

    Article  CAS  PubMed  Google Scholar 

  9. Gaskill BN, Gordon CJ, Pajor EA et al (2013) Impact of nesting material on mouse body temperature and physiology. Physiol Behav 110–111:87–95. https://doi.org/10.1016/j.physbeh.2012.12.018

    Article  CAS  PubMed  Google Scholar 

  10. FELASA working group on revision of guidelines for health monitoring of rodents and rabbits, Mähler Convenor M, Berard M et al (2014) FELASA recommendations for the health monitoring of mouse, rat, hamster, Guinea pig and rabbit colonies in breeding and experimental units. Lab Anim 48:178–192. https://doi.org/10.1177/0023677213516312

    Article  CAS  Google Scholar 

  11. Dobrowolski P, Fischer M, Naumann R (2018) Novel insights into the genetic background of genetically modified mice. Transgenic Res 27:265–275. https://doi.org/10.1007/s11248-018-0073-2

    Article  CAS  PubMed  Google Scholar 

  12. Wefers B, Wurst W, Kühn R (2011) Design and generation of gene-targeting vectors. Curr Protoc Mouse Biol 1:199–211. https://doi.org/10.1002/9780470942390.mo100179

    Article  PubMed  Google Scholar 

  13. Laber K, Newcomer CE, Decelle T et al (2016) Recommendations for addressing harm-benefit analysis and implementation in ethical evaluation – report from the AALAS-FELASA working group on harm-benefit analysis – part 2. Lab Anim 50:21–42. https://doi.org/10.1177/0023677216642397

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brønstad A, Newcomer CE, Decelle T et al (2016) Current concepts of harm-benefit analysis of animal experiments – report from the AALAS-FELASA working group on harm-benefit analysis – part 1. Lab Anim 50:1–20. https://doi.org/10.1177/0023677216642398

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gordon JW, Scangos GA, Plotkin DJ et al (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77:7380–7384. https://doi.org/10.1073/pnas.77.12.7380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rostovskaya M, Naumann R, Fu J et al (2013) Transposon mediated BAC transgenesis via pronuclear injection of mouse zygotes. Genes N Y N 2000 51:135–141. https://doi.org/10.1002/dvg.22362

    Article  CAS  Google Scholar 

  17. Fielder TJ (2011) Transgenic production benchmarks. In: Pease S (ed) Advanced protocols for animal transgenesis: an ISTT manual. Springer-Verlag, Berlin, pp 81–97

    Chapter  Google Scholar 

  18. Hart-Johnson S, Mankelow K (2021) Archiving genetically altered animals: a review of cryopreservation and recovery methods for genome edited animals. Lab Anim:00236772211007306. https://doi.org/10.1177/00236772211007306

  19. Shmerling D, Danzer C-P, Mao X et al (2005) Strong and ubiquitous expression of transgenes targeted into the beta-actin locus by Cre/lox cassette replacement. Genes N Y N 2000 42:229–235. https://doi.org/10.1002/gene.20135

    Article  CAS  Google Scholar 

  20. Tasic B, Hippenmeyer S, Wang C et al (2011) Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci U S A 108:7902–7907. https://doi.org/10.1073/pnas.1019507108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ohtsuka M, Miura H, Mochida K et al (2015) One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT). BMC Genomics 16:274. https://doi.org/10.1186/s12864-015-1432-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bradley A, Anastassiadis K, Ayadi A et al (2012) The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome 23:580–586. https://doi.org/10.1007/s00335-012-9422-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cui Y, Xu J, Cheng M et al (2018) Review of CRISPR/Cas9 sgRNA design tools. Interdiscip Sci 10:455–465. https://doi.org/10.1007/s12539-018-0298-z

    Article  CAS  PubMed  Google Scholar 

  24. McBeath E, Parker-Thornburg J, Fujii Y et al (2020) Rapid evaluation of CRISPR guides and donors for engineering mice. Genes Basel 11. https://doi.org/10.3390/genes11060628

  25. Mehravar M, Shirazi A, Nazari M, Banan M (2019) Mosaicism in CRISPR/Cas9-mediated genome editing. Dev Biol 445:156–162. https://doi.org/10.1016/j.ydbio.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  26. Lee K, Mackley VA, Rao A et al (2017) Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. eLife 6:e25312. https://doi.org/10.7554/eLife.25312

    Article  PubMed  PubMed Central  Google Scholar 

  27. Renaud J-B, Boix C, Charpentier M et al (2016) Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep 14:2263–2272. https://doi.org/10.1016/j.celrep.2016.02.018

    Article  CAS  PubMed  Google Scholar 

  28. Paquet D, Kwart D, Chen A et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129. https://doi.org/10.1038/nature17664

    Article  CAS  PubMed  Google Scholar 

  29. Kim N, Kim HK, Lee S et al (2020) Prediction of the sequence-specific cleavage activity of Cas9 variants. Nat Biotechnol 38:1328–1336. https://doi.org/10.1038/s41587-020-0537-9

    Article  CAS  PubMed  Google Scholar 

  30. Hasegawa A, Mochida K, Inoue H et al (2016) High-yield superovulation in adult mice by anti-inhibin serum treatment combined with estrous cycle synchronization. Biol Reprod 94:21. https://doi.org/10.1095/biolreprod.115.134023

    Article  CAS  PubMed  Google Scholar 

  31. Whitten WK (1958) Modification of the oestrous cycle of the mouse by external stimuli associated with the male; changes in the oestrous cycle determined by vaginal smears. J Endocrinol 17:307–313

    Article  CAS  PubMed  Google Scholar 

  32. Leach MC, Klaus K, Miller AL et al (2012) The assessment of post-vasectomy pain in mice using behaviour and the Mouse Grimace Scale. PLoS One 7:e35656. https://doi.org/10.1371/journal.pone.0035656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miller AL, Kitson GL, Skalkoyannis B et al (2016) Using the mouse grimace scale and behaviour to assess pain in CBA mice following vasectomy. Appl Anim Behav Sci 181:160–165. https://doi.org/10.1016/j.applanim.2016.05.020

    Article  PubMed  PubMed Central  Google Scholar 

  34. Byers SL, Wiles MV, Dunn SL, Taft RA (2012) Mouse estrous cycle identification tool and images. PLoS One 7:e35538. https://doi.org/10.1371/journal.pone.0035538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kolbe T, Palme R, Touma C, Rülicke T (2012) Repeated use of surrogate mothers for embryo transfer in the mouse. Biol Reprod:86. https://doi.org/10.1095/biolreprod.111.092445

  36. Zintzsch A, Noe E, Reissmann M et al (2017) Guidelines on severity assessment and classification of genetically altered mouse and rat lines. Lab Anim 51:573–582. https://doi.org/10.1177/0023677217718863

    Article  CAS  PubMed  Google Scholar 

  37. Zintzsch A, Noe E, Grimm H (2020) Navigating uncertainties: how to assess welfare and harm in genetically altered animals responsibly—a practical guideline. Animals 10:857. https://doi.org/10.3390/ani10050857

    Article  PubMed  PubMed Central  Google Scholar 

  38. Moltó V-G, Montoliu L, Pease S, Saunders T (2011) Designing transgenes for optimal expression. In: Advanced protocols for animal transgenesis: an ISTT manual. Springer, Berlin, pp 81–97

    Google Scholar 

  39. Goodwin LO, Splinter E, Davis TL et al (2019) Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res 29:494–505. https://doi.org/10.1101/gr.233866.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chiang C, Jacobsen JC, Ernst C et al (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44:390–397, S1. https://doi.org/10.1038/ng.2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miura H, Quadros RM, Gurumurthy CB, Ohtsuka M (2018) Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc 13:195–215. https://doi.org/10.1038/nprot.2017.153

    Article  CAS  PubMed  Google Scholar 

  42. Chu VT, Weber T, Graf R et al (2016) Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol 16:4. https://doi.org/10.1186/s12896-016-0234-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gu B, Posfai E, Gertsenstein M, Rossant J (2020) Efficient generation of large-fragment knock-in mouse models using 2-cell (2C)-homologous recombination (HR)-CRISPR. Curr Protoc Mouse Biol 10:e67. https://doi.org/10.1002/cpmo.67

    Article  CAS  PubMed  Google Scholar 

  44. Ingrao JC, Johnson R, Tor E et al (2013) Aqueous stability and oral pharmacokinetics of meloxicam and carprofen in male C57BL/6 mice. J Am Assoc Lab Anim Sci 52:553–559

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Scarborough J, Mueller F, Arban R et al (2020) Preclinical validation of the micropipette-guided drug administration (MDA) method in the maternal immune activation model of neurodevelopmental disorders. Brain Behav Immun 88:461–470. https://doi.org/10.1016/j.bbi.2020.04.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ronald Naumann, Jan Parker-Thornburg, Thomas Rülicke, and Anne Zintzsch for their valuable input during the writing of the manuscript. Figure 1 was created with Biorender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Zevnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Buch, T., Jerchow, B., Zevnik, B. (2023). Practical Application of the 3Rs in Rodent Transgenesis. In: Saunders, T.L. (eds) Transgenesis. Methods in Molecular Biology, vol 2631. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2990-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2990-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2989-5

  • Online ISBN: 978-1-0716-2990-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation