Real Variable Methods in Harmonic Analysis and Navier–Stokes Equations

  • Chapter
  • First Online:
Harmonic Analysis and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 168))

  • 1091 Accesses

Abstract

Real variable methods in harmonic analysis were developed throughout the works of E.M. Stein. They turn out to be a powerful tool for the study of nonlinear PDEs. We illustrate this point by discussing various points of the modern theory of Navier–Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The book is the one I published in 2002 [70].

  2. 2.

    This was after this result that Brezis asked me to write a book on Besov estimates for Navier–Stokes equations [70].

References

  1. P. Auscher, D. Frey, On well-posedness of parabolic equations of Navier-Stokes type with \({BMO}^{-1}(\mathbb {R}^n)\) data. J. Inst. Math. Jussieu 16, 947–985 (2017)

    Google Scholar 

  2. H. Bahouri, J.Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations (Springer, Berlin/Heidelberg, 2011)

    Book  MATH  Google Scholar 

  3. O. Barraza, Self-similar solutions in weak Lp-spaces of the Navier–Stokes equations. Rev. Mat. Iberoam. 12, 411–439 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Battle, P. Federbush, Divergence–free vector wavellets. Mich. Math. J. 40, 181–195 (1995)

    MATH  Google Scholar 

  5. A. Benedek, A.P. Calderón, R. Panzone, Convolution operators on Banach space valued functions. Proc. Nat. Acad. Sci. USA 48, 356–365 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.M. Bony. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Ec. Norm. Sup. 14, 209–246 (1981)

    Article  MATH  Google Scholar 

  7. L. Brandolese. Localisation, oscillations et comportement asymptotique pour les équations de Navier–Stokes (Thèse, ENS Cachan, 2001)

    Google Scholar 

  8. L. Brandolese, Y. Meyer, On the instantaneous spreading for the Navier–Stokes system in the whole space. ESAIM Contr. Optim. Calc. Var. 8, 273–285 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.P. Calderón, A. Zygmund, On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Calderón, Initial values of Navier–Stokes equations. Proc. Am. Math. Soc. 117, 761–766 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Campanato, Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa 17, 175–188 (1963)

    MathSciNet  MATH  Google Scholar 

  13. M. Cannone, Ondelettes, Paraproduits et Navier–Stokes (Diderot Editeur, Paris, 1995)

    MATH  Google Scholar 

  14. M. Cannone, Harmonic analysis tools for solving the incompressible Navier–Stokes equations, in Handbook of Mathematical Fluid Mechanics, vol. III, ed. by S.J. Friedlander, D. Serre (Elsevier, Amsterdam, 2004)

    Google Scholar 

  15. M. Cannone, G. Wu, Global well–posedness for Navier–Stokes equations in critical Fourier–Herz spaces. Nonlinear Anal. 75, 3754–3760 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Chamorro, A molecular method applied to a non-local PDE in stratified Lie groups. J. Math. Anal. Appl. 413, 583–608 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Chamorro, S. Menozzi, Non linear singular drifts and fractional operators: when Besov meets Morrey and Campanato. Potential Anal. 49, 1–35 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.M. Chemin, Remarques sur l’existence globale pour le système de Navier–Stokes incompressible. SIAM J. Math. Anal. 23, 20–28 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.Y. Chemin, N. Lerner, Flot de champs de vecteurs non-lipschitziens et équations de Navier–Stokes. J. Diff. Equ. 12, 314–326 (1995)

    Article  MATH  Google Scholar 

  20. Q. Chen, Z. Zhang, Space-time estimates in the Besov spaces and the 3D Navier–Stokes equations. Methods Appl. Anal. 13, 107–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Q. Chen, C. Miao, Z. Zhang, On the uniqueness of weak solutions for the 3D Navier–Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2165–2180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Coifman, P.L. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces. J. Math. Pures et Appl. 72, 247–286 (1992)

    MathSciNet  MATH  Google Scholar 

  23. R. Coifman, Y. Meyer, E.M. Stein, Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304–335 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Coifman, Y. Meyer, Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier 28, 177–202 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Coifman, Y. Meyer, Au delà des opérateurs pseudo-différentiels. Astérisque 57, Société Mathématique de France (1978)

    Google Scholar 

  26. R. Coifman, Y. Meyer, Ondelettes et Opérateurs, vol. III (Hermann, Paris, 1991)

    MATH  Google Scholar 

  27. R. Coifman, G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Mathematics (Springer, Berlin/Heidelberg, 1971)

    Book  MATH  Google Scholar 

  28. S. Dobrokhotov, A. Shafarevich, Some integral identities and remarks on the decay at infinity of the solutions to the Navier–Stokes equations in the entire space. Russ. J. Math. Phys. 2, 133–135 (1994)

    MathSciNet  MATH  Google Scholar 

  29. J. Duchon, R. Robert, Dissipation d’énergie pour des solutions faibles des équations d’Euler et Navier–Stokes incompressibles. C. R. Acad. Sci. Paris (Série I) 329, 243–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Fabes, B.F. Jones, N. Rivière, The initial value problem for the Navier–Stokes equations with data in L p. Arch. Ration. Mech. Anal. 45, 222–240 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Farge, N. Kevlahan, V. Perrier, K. Schneider, Turbulence analysis, modelling and computing using wavelets, in Wavelets and Physics, ed. by van der Berg (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  32. P. Federbush, Navier and Stokes meet the wavelet. Commun. Math. Phys. 155, 219–248 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Fefferman, The uncertainty principle. Bull. Am. Math. Soc. 9, 129–206 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Fefferman, Existence and smoothness of the Navier–Stokes equation, in The Millennium Prize Problems, ed, by J.A. Carlson, A. Jaffe, A. Wiles (American Mathematical Society, Cambridge, 2006), pp. 57–67

    Google Scholar 

  35. C. Fefferman, E.M. Stein, H p spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  36. P.G. Fernandez-Dálgo, P.G. Lemarié–Rieusset, Weak solutions for Navier–Stokes equations with initial data in weighted L 2 spaces. Preprint, Univ. Évry (2019)

    Google Scholar 

  37. C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. G.B. Folland, Some topics in the history of harmonic analysis in the twentieth century. Indian J. Pure Appl. Math. 48, 1–58 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. G.B. Folland, E.M. Stein, Hardy Spaces on Homogeneous Groups (Princeton University Press, Princeton, 1982)

    MATH  Google Scholar 

  40. M. Frazier, B. Jawerth, A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Frick, V. Zimin, Hierarchical models of turbulence, in Wavelets, Fractals and Fourier Transforms, ed. by M. Farge et al. (Oxford University Press, Oxford, 1993)

    Google Scholar 

  42. U. Frisch. Turbulence. The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  43. H. Fujita, T. Kato, On the non-stationary Navier-Stokes system. Rend. Sem. Math. Univ. Padova 32, 243–260 (1962)

    MATH  Google Scholar 

  44. G. Furioli, P.G. Lemarié-Rieusset, E. Terraneo, Sur l’unicité dans \( L^3(\mathbb {R}^3)\) des solutions “mild” de l’équation de Navier–Stokes. C. R. Acad. Sci. Paris, Série I 325, 1253–1256 (1997)

    Google Scholar 

  45. G. Furioli, P.G. Lemarié-Rieusset, E. Terraneo, Unicité dans \(\text{L}^3(\mathbb {R}^3)\) et d’autres espaces limites pour Navier–Stokes. Rev. Mat. Iberoam. 16, 605–667 (2000)

    Google Scholar 

  46. G. Furioli, E. Terraneo, Molecules of the Hardy space and the Navier–Stokes equations. Funkcial. Ekvac. 45, 141–160 (2002)

    MathSciNet  MATH  Google Scholar 

  47. P. Gérard, Y. Meyer, F. Oru, Inégalités de Sobolev précisées, in Séminaire X-EDP (1996)

    Google Scholar 

  48. Y. Giga, T. Miyakawa, Navier–Stokes flow in \(\mathbb {R}^3\) with measures as initial vorticity and Morrey spaces. Commun. Partial Diff. Equ. 14, 577–618 (1989)

    Google Scholar 

  49. D. Goldberg, A local version of real Hardy spaces. Duke Math. J. 46, 27–42 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Grafakos, Classical Harmonic Analysis, 2nd edn. (Springer, New York, 2008)

    MATH  Google Scholar 

  51. L. Grafakos, Modern Harmonic Analysis, 2nd edn. (Springer, London, 2009)

    MATH  Google Scholar 

  52. G.H. Hardy, J.E. Littlewood, A maximal theorem with function-theoretic applications. Acta Math. 54, 81–116 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  53. L. Hedberg, On certain convolution inequalities. Proc. Am. Math. Soc. 10, 505–510 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  54. C. Herz, Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283–323 (1968/1969)

    MathSciNet  MATH  Google Scholar 

  55. T. Kato, Strong L p solutions of the Navier–Stokes equations in \(\mathbb {R}^m\) with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Google Scholar 

  56. T. Kato, Strong solutions of the Navier–Stokes equations in Morrey spaces. Boletim da Sociedade Brasileira de Matemática 22, 127–155 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  57. T. Kato, G. Ponce, Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  58. H. Koch, D. Tataru, Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  59. H. Kozono, M. Nakao, Periodic solutions of the Navier–Stokes equations in unbounded domains. Tohoku Math. J. 48, 33–50 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  60. H. Kozono, T. Ogawa, Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  61. H. Kozono, Y. Shimada, Bilinear estimates in homogeneous Triebel–Lizorkin spaces and the Navier–Stokes equations. Math. Nachr. 276, 63–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. H. Kozono, Y. Taniuchi, Bilinear estimates in BMO and Navier–Stokes equations. Math. Z. 157, 173–194 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  63. H. Kozono, M. Yamazaki, Semilinear heat equations and the Navier–Stokes equations with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19, 959–1014 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  64. I. Kukavica, Partial regularity for the Navier–Stokes equations with a force in a Morrey space. J. Math. Anal. Appl. 374, 573–584 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. O.A. Ladyzhenskaya, G.A. Seregin, On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. J. Math. Fluid Mech. 1, 356–387 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  66. Y. Le Jan, A.S. Sznitman, Cascades aléatoires et équations de Navier–Stokes. C. R. Acad. Sci. Paris 324 Série I, 823–826 (1997)

    Google Scholar 

  67. Z. Lei, F. Lin, Global mild solutions of Navier–Sokes equations. Commun. Pure Appl. Math. 64, 297–1304 (2011)

    Article  Google Scholar 

  68. P.G. Lemarié-Rieusset. Analyses multi-résolutions non orthogonales, commutation entre projecteurs et dérivations et ondelettes vecteurs à divergence nulle, Revista Mat. Iberoamer. 8, 221–237 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  69. P.G. Lemarié-Rieusset, Une remarque sur l’analyticité des solutions milds des équations de Navier–Stokes dans \(\mathbb {R}^{3}\). C. R. Acad. Sci. Paris Serie I 330, 183–186 (2000)

    Google Scholar 

  70. P.G. Lemarié-Rieusset, Recent Developments in the Navier–Stokes Problem (CRC Press, Boca Raton, 2002)

    Book  MATH  Google Scholar 

  71. P.G. Lemarié-Rieusset, Nouvelles remarques sur l’analyticité des solutions milds des équations de Navier–Stokes dans \(\mathbb {R}^{3}\). C. R. Acad. Sci. Paris Serie I 338, 443–446 (2004)

    Google Scholar 

  72. P.G. Lemarié–Rieusset, The Navier–Stokes equations in the critical Morrey-Campanato space. Revista Matematica Iberoamericana 23, 897–930 (2007)

    Google Scholar 

  73. P.G. Lemarié-Rieusset, Euler equations and real harmonic analysis. Arch. Rat. Mech. Anal. 204, 355–386 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  74. P.G. Lemarié–Rieusset, The Navier–Stokes Problem in the 21st Century (Chapman & Hall/CRC, Boca Raton, 2016)

    Google Scholar 

  75. P.G. Lemarié–Rieusset, R. May, Uniqueness for the Navier–Stokes equations and multipliers between Sobolev spaces. Nonlinear Anal. 66, 813–838 (2007)

    Google Scholar 

  76. J.L. Lions, Sur la régularité et l’unicité des solutions turbulentes des équations de Navier–Stokes. Rendiconti del Seminario Matematico della Università di Padova 30, 16–23 (1960)

    MathSciNet  MATH  Google Scholar 

  77. J. Marcinkiewicz, Sur l’interpolation d’opérateurs. C. R. Acad. Sci. Paris 208, 1272–1273 (1939)

    MATH  Google Scholar 

  78. R. May, Régularité et unicité des solutions milds des équations de Navier–Stokes, Ph.D. Thesis, Université d’Évry (2002)

    Google Scholar 

  79. V. Maz’ya, On the theory of the n-dimensional Schrödinger operator [in Russian]. Izvestya Akademii Nauk SSSR (ser. Mat.,) 28, 1145–1172 (1964)

    Google Scholar 

  80. Y. Meyer, Wavelets, Paraproducts and Navier–Stokes Equations, Current developments in Mathematics 1996 (International Press, Cambridge, 1999), pp. 02238–2872

    Google Scholar 

  81. S. Monniaux, Uniqueness of mild solutions of the Navier–Stokes equation and maximal Lp-regularity. C. R. Acad. Sci. Paris, Série I 328, 663–668 (1999)

    Google Scholar 

  82. S. Montgomery–Smith, Finite time blow up for a Navier–Sokes like equation. Proc. Am. Math. Soc. 129, 3017–3023 (2007)

    Google Scholar 

  83. R. O’Neil, Convolution operators and L(p, q) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  84. F. Oru, Rôle des oscillations dans quelques problèmes d’analyse non linéaire (Thèse, École Normale Supérieure de Cachan, 1998)

    Google Scholar 

  85. G. Prodi, Un teorema di unicitá per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  86. M. Riesz, Sur les fonctions conjuguées. Math. Z. 27, 218–244 (1927)

    Article  MATH  Google Scholar 

  87. J. Serrin, The initial value problem for the Navier–Stokes equations, in Nonlinear Problems (Proceedings of Symposium, Madison, 1962) (University of Wisconsin Press, Madison, 1963), pp. 69–98

    Google Scholar 

  88. J. Serrin, On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  89. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1971)

    Book  Google Scholar 

  90. E.M. Stein, Harmonic Analysis (Princeton University Press, Princeton, 1993)

    Google Scholar 

  91. E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, 1971)

    MATH  Google Scholar 

  92. L. Tartar, An Introduction to Navier–Stokes Equation and Oceanography (Springer, Berlin/New York, 2006)

    Book  MATH  Google Scholar 

  93. M.E. Taylor, Analysis on Morrey Spaces and Applications to Navier–Stokes Equations and Other Evolution Equations Commun. Partial Differ. Equ. 17, 1407–1456 (1992)

    Article  MATH  Google Scholar 

  94. K. Urban, Multiskalenverfahren für das Stokes-Problem und angepasste Wavelet-Basen (Verlag der Augustinus-Buchhandlung, Aachen, 1995)

    Google Scholar 

  95. M. Vishik, Hydrodynamics in Besov spaces. Arch. Ration. Mech. Anal. 145, 197–214 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  96. M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Annales Scientifiques de l’cole Normale Suprieure 32, 769–812 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  97. J. **ao, Homothetic variant of fractional Sobolev space with application to Navier–Stokes system. Dyn. Partial Differ. Equ. 4, 227–245 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Gilles Lemarié-Rieusset .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lemarié-Rieusset, P.G. (2021). Real Variable Methods in Harmonic Analysis and Navier–Stokes Equations. In: Rassias, M.T. (eds) Harmonic Analysis and Applications. Springer Optimization and Its Applications, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-030-61887-2_10

Download citation

Publish with us

Policies and ethics

Navigation