Thoughts on Numerical and Conceptual Harmonic Analysis

  • Chapter
  • First Online:
New Trends in Applied Harmonic Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

If one compares the literature on abstract Harmonic Analysis or publications with the word “Fourier Analysis” in the title with books describing the foundations of digital signal processing or systems theory one may easily get the impression that they describe two different worlds having little in common except for some vocabulary, indicating their joint roots.

It is the purpose of this article to shed some light on the existing and sometimes buried interconnections between these two branches of Fourier Analysis. We suggest to take a broader perspective on Harmonic Analysis, re-emphasizing how they are tied together in many ways and how numerical experiments may help to understand concepts of Harmonic Analysis. Based on our experience we firmly believe that Fourier Analysis provides opportunities to relate relevant mathematical theorems to valuable algorithms, which also have to be properly implemented (typically making use of the FFT, the Fast Fourier Transform). Thus this note tries to bridge the gap between pure mathematics and real-world engineering applications.

In a previous paper (H. G. Feichtinger, Elements of Postmodern Harmonic Analysis, pages 1 – 27, Springer, 2015) the author has already outlined some ideas in this direction, by introducing the idea of Conceptual Harmonic Analysis, as a link between the two worlds. The best way to describe the connections between the two worlds is by means of generalized functions (often called distributions). We will indicate that the Banach Gelfand triple \( (\boldsymbol{S}_{\!0},\boldsymbol{L}^{2},\boldsymbol{S}_{\!0}\!')(\mathbb{R}^{d}) \), which is based on a particular Banach algebra of continuous functions, namely the Segal algebra \( \big(\boldsymbol{S}_{\!0}(\mathbb{R}^{d}),\|\mbox{ $\,\cdot \,$}\|_{\boldsymbol{S}_{\!0}}\big) \), provides convenient vehicle to express many otherwise “soft transition” in a distributional sense. In the context of the space \( \boldsymbol{S}_{\!0}(\mathbb{R}^{d}) \) of test functions approximation by finite sequences makes perfect sense and one can justify many transitions between the two worlds (continuous versus finite signals) in a clear mathematical context (see H. G. Feichtinger and N. Kaiblinger, Quasi-interpolation in the Fourier algebra, J. Approx. Theory, 144(1):103–118, 2007).The current text also contains various considerations of a general nature, which are supposed to stimulate discussions and reflection of the work done in the field of abstract and applied Harmonic Analysis in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://at.yorku.ca/t/o/p/d/07.dir/german.htm

References

  1. I. Amidror. Mastering the Discrete Fourier Transform in one, two or several Dimensions. Pitfalls and Artifacts. London: Springer, 2013.

    Book  MATH  Google Scholar 

  2. P. Antosik, J. Mikusinski, and R. Sikorski. Theory of Distributions. The Sequential Approach.. Elsevier Scientific Publishing Company, 1973.

    Google Scholar 

  3. J. J. Benedetto and A. I. Zayed. Sampling, Wavelets, and Tomography. Birkhäuser, 2004.

    Book  MATH  Google Scholar 

  4. R. N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill Book Company, Auckland etc., 2nd ed., 3rd printing. International Student Edition. edition, 1983.

    Google Scholar 

  5. W. L. Briggs and V. E. Henson. The DFT. An Owner’s Manual for the Discrete Fourier Transform. SIAM, Philadelphia, PA, 1995.

    Google Scholar 

  6. P. Butzer, P. Ferreira, J. Higgins, G. Schmeisser, and R. L. Stens. The sampling theorem, Poisson’s summation formula, general Parseval formula, reproducing kernel formula and the Paley-Wiener theorem for bandlimited signals – their interconnections. Appl. Anal., 90(3–4):431–461, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Butzer, P. Ferreira, G. Schmeisser, and R. L. Stens. The summation formulae of Euler-Maclaurin, Abel-Plana, Poisson, and their interconnections with the approximate sampling formula of signal analysis. Result. Math., 59(3–4):359–400, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. L. Butzer and A. Gessinger. The approximate sampling theorem, Poisson’s sum formula, a decomposition theorem for Parseval’s equation and their interconnections. Ann. Numer. Math., 4(1–4):143–160, 1997.

    MathSciNet  MATH  Google Scholar 

  9. P. L. Butzer and R. J. Nessel. Fourier Analysis and Approximation. Vol. 1: One-dimensional Theory. Birkhäuser, Stuttgart, 1971.

    Google Scholar 

  10. P. L. Butzer and R. L. Stens. The Poisson summation formula, Whittaker’s cardinal series and approximate integration. In Approximation Theory, 2nd Conf, Edmonton/Alberta 1982, CMS Conf Proc, Volume 3, pages 19–36, 1983.

    Google Scholar 

  11. G. Cariolaro. Unified Signal Theory. Springer, London, 2011.

    Book  MATH  Google Scholar 

  12. J. Cooley and J. Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Comp., 19:297–301, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Cordero, H. G. Feichtinger, and F. Luef. Banach Gelfand triples for Gabor analysis. In Pseudo-differential Operators, Volume 1949 of Lecture Notes in Mathematics, pages 1–33. Springer, Berlin, 2008.

    Google Scholar 

  14. A. Deitmar. A First Course in Harmonic Analysis. Universitext. Springer, New York, NY, 2002.

    Book  MATH  Google Scholar 

  15. A. Deitmar and S. Echterhoff. Principles of Harmonic Analysis. New York: Springer, 2009.

    MATH  Google Scholar 

  16. H. G. Feichtinger. Choosing Function Spaces in Harmonic Analysis, Volume 4 of Excursions in Harmonic Analysis. The February Fourier Talks at the Norbert Wiener Center. Birkhäuser, 2015.

    Google Scholar 

  17. H. G. Feichtinger. Elements of Postmodern Harmonic Analysis, pages 1 – 27. Springer, 2015.

    MATH  Google Scholar 

  18. H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal., 86(2):307–340, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. G. Feichtinger and K. Gröchenig. Multidimensional irregular sampling of band-limited functions in L p-spaces. Conf. Oberwolfach Feb. 1989, pages 135–142, 1989.

    MathSciNet  MATH  Google Scholar 

  20. H. G. Feichtinger and K. Gröchenig. Iterative reconstruction of multivariate band-limited functions from irregular sampling values. SIAM J. Math. Anal., 23(1):244–261, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. G. Feichtinger and N. Kaiblinger. Varying the time-frequency lattice of Gabor frames. Trans. Amer. Math. Soc., 356(5):2001–2023, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. G. Feichtinger and N. Kaiblinger. Quasi-interpolation in the Fourier algebra. J. Approx. Theory, 144(1):103–118, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. G. Feichtinger and W. Kozek. Quantization of TF lattice-invariant operators on elementary LCA groups. In H. G. Feichtinger and T. Strohmer, editors, Gabor analysis and algorithms, Appl. Numer. Harmon. Anal., pages 233–266. Birkhäuser Boston, Boston, MA, 1998.

    Google Scholar 

  24. H. G. Feichtinger and F. Luef. Wiener amalgam spaces for the Fundamental Identity of Gabor Analysis. Collect. Math., 57(Extra Volume (2006)):233–253, 2006.

    Google Scholar 

  25. H. G. Feichtinger and G. Zimmermann. A Banach space of test functions for Gabor analysis. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis, pages 123–170, 1998, Birkhäuser Boston.

    Google Scholar 

  26. J. V. Fischer. On the duality of discrete and periodic functions. Mathematics, 3(2):299–318, 2015.

    Article  MATH  Google Scholar 

  27. G. B. Folland. Harmonic Analysis in Phase Space. Princeton University Press, Princeton, N.J., 1989.

    MATH  Google Scholar 

  28. G. B. Folland. A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics. Boca Raton, FL: CRC Press. viii, Boca Raton, FL, 1995.

    MATH  Google Scholar 

  29. M. Frigo and S. Johnson. FFTW: An adaptive software architecture for the FFT. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998., Volume 3, pages 1381–1384, 1998.

    Google Scholar 

  30. M. Frigo and S. Johnson. FFTW User’s Manual. Massachusetts Institute of Technology, 1998.

    Google Scholar 

  31. M. Frigo and S. Johnson. The design and implementation of FFTW 3. Proceedings of the IEEE, 93(2):216–231, 2005.

    Article  Google Scholar 

  32. D. Gabor. Theory of communication. J. IEE, 93(26):429–457, 1946.

    Google Scholar 

  33. C. Gasquet and P. Witomski. Fourier Analysis and Applications. Filtering, Numerical Computation, Wavelets. Transl. from the French by R. Ryan. Springer, 1999.

    Google Scholar 

  34. L. Grafakos. Classical Fourier Analysis (Second Edition), Volume 249 of Graduate Texts in Mathematics. Springer, New York, 2008.

    Google Scholar 

  35. L. Grafakos. Modern Fourier Analysis(Second Edition), Volume 250 of Graduate Texts in Mathematics. Springer, New York, 2009.

    Google Scholar 

  36. K. Gröchenig. Foundations of Time-Frequency Analysis. Appl. Numer. Harmon. Anal. Birkhäuser, Boston, MA, 2001.

    Book  MATH  Google Scholar 

  37. K. Gröchenig and M. Leinert. Wiener’s lemma for twisted convolution and Gabor frames. J. Amer. Math. Soc., 17:1–18, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  38. E. Hewitt and K. A. Ross. Abstract Harmonic Analysis. Vol. 1: Structure of Topological Groups; Integration Theory; Group Representations. 2nd ed. Springer-Verlag, Berlin-Heidelberg-New York, 1979.

    Google Scholar 

  39. E. Hewitt and K. A. Ross. Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups. Springer, Berlin, Heidelberg, New York, 1970.

    Google Scholar 

  40. J.-P. Kahane and P.-G. Lemarie Rieusset. Remarks on the Poisson summation formula (Remarques sur la formule sommatoire de Poisson). Studia Math., 109:303–316, 1994.

    MathSciNet  MATH  Google Scholar 

  41. N. Kaiblinger. Approximation of the Fourier transform and the dual Gabor window. J. Fourier Anal. Appl., 11(1):25–42, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  42. D. W. Kammler. A First Course in Fourier Analysis. Prentice Hall, 1999.

    MATH  Google Scholar 

  43. R. P. Kanwal. Generalized Functions. Theory and Applications. 3rd Revised ed. Birkhäuser, 2004.

    Google Scholar 

  44. Y. Katznelson. An Introduction to Harmonic Analysis. 3rd Corr. ed. Cambridge University Press, 2004.

    Google Scholar 

  45. H. L. Lebesgue. Lecons sur l’intégration et la Recherche des Fonctions Primitives. Cambridge Library Collection. Cambridge University Press, Cambridge, 2009.

    MATH  Google Scholar 

  46. L. Loomis. An Introduction to Abstract Harmonic Analysis. Van Nostrand and Co., 1953.

    MATH  Google Scholar 

  47. B. Luong. Fourier Analysis on Finite Abelian Groups. Birkhäuser, 2009.

    Book  MATH  Google Scholar 

  48. J. Ramanathan. Methods of Applied Fourier Analysis. Birkhäuser, Boston, 1998.

    Book  MATH  Google Scholar 

  49. K. R. Rao and P. Yip. Discrete Cosine Transform. Algorithms, Advantages, Applications. Academic Press., Boston, MA, 1990.

    Google Scholar 

  50. H. Reiter. Classical Harmonic Analysis and Locally Compact Groups. Clarendon Press, Oxford, 1968.

    MATH  Google Scholar 

  51. H. Reiter and J. D. Stegeman. Classical Harmonic Analysis and Locally Compact Groups. 2nd ed. Clarendon Press, Oxford, 2000.

    Google Scholar 

  52. J. Romulad. Fourier approach to digital holography. Volume 4607, pages 161–167. SPIE, 2002.

    Google Scholar 

  53. W. Rudin. Fourier Analysis on Groups. Interscience Publishers, New York, London, 1962.

    MATH  Google Scholar 

  54. I. Sandberg. The superposition scandal. Circuits Syst. Signal Process., 17(6):733–735, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  55. I. Sandberg. Causality and the impulse response scandal. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(6):810–813, Jun 2003.

    Article  MathSciNet  Google Scholar 

  56. I. Sandberg. Continuous multidimensional systems and the impulse response scandal. Multidimensional Syst. Signal Process., 15(3):295–299, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  57. R. Shakarchi and E. M. Stein. Fourier Analysis: An Introduction. Princeton Lectures in Analysis. Princeton University Press, 2003.

    MATH  Google Scholar 

  58. E. Stade. Fourier analysis. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, 2005.

    Book  MATH  Google Scholar 

  59. A. Terras. Fourier Analysis on Finite Groups and Applications., Volume 43 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  60. R. M. Trigub and E. S. Belinsky. Fourier Analysis and Approximation of Functions. Kluwer Academic Publishers, 2004.

    Book  Google Scholar 

  61. R. Vallee. The ‘epsilon distribution’or the antithesis of Dirac’s delta. Cybernetics and Systems Research, 92:97–102, 1992.

    Google Scholar 

  62. R. Vallee. About Wiener’s generalized Harmonic Analysis. Kybernetes, 23(6/7):65–70, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Vallee. Generalized Harmonic Analysis and epsilon-distribution. Cybernetica, 37(3–4): 377–385, 1994.

    MathSciNet  MATH  Google Scholar 

  64. R. Vallee. On certain distributions met in signal theory and other domains of systems science. Systems Science, 30(2):5–10, 2004.

    MathSciNet  MATH  Google Scholar 

  65. D. Voelz. Computational Fourier Optics. A MATLAB Tutorial. Tutorial text. Vol. 89. SPIE, 2011.

    Google Scholar 

  66. H. J. Weaver. Applications of Discrete and Continuous Fourier Analysis. Wiley-Interscience, 1983.

    MATH  Google Scholar 

  67. H. J. Weaver. Theory of Discrete and Continuous Fourier Analysis. Wiley-Interscience, 1989.

    MATH  Google Scholar 

  68. A. Weil. L’integration dans les Groupes Topologiques et ses Applications. Hermann and Cie, Paris, 1940.

    MATH  Google Scholar 

  69. M. Wong. Discrete Fourier analysis. Pseudo-Differential Operators. Theory and Applications 5. Basel: Birkhäuser. viii, 176 p., 2011.

    Google Scholar 

  70. A. I. Zayed. Advances in Shannon‘s Sampling Theory. CRC Press, Boca Raton, FL, 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans G. Feichtinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feichtinger, H.G. (2016). Thoughts on Numerical and Conceptual Harmonic Analysis. In: Aldroubi, A., Cabrelli, C., Jaffard, S., Molter, U. (eds) New Trends in Applied Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-27873-5_9

Download citation

Publish with us

Policies and ethics

Navigation