Number Synthesis of New Prosthetic Knee Mechanisms

  • Conference paper
  • First Online:
Multibody Mechatronic Systems (MuSMe 2021)

Abstract

Lower limb prostheses are used to replace amputated limbs promoting gait and controlled movements. Being a complex joint, human knee movements are difficult to reproduce. The majority of knee mechanisms on the market are designed with four-bar mechanisms and a few still see the knee joint as a single rotation joint. This paper presents the number synthesis of mechanisms capable of reproducing knee movements. To do so, new kinematic chains for prosthetic knee mechanisms are explored. The number synthesis results on three loops kinematic chains capable of generating similar movements to human knee, enabling simultaneous rotation and translation movements and kee** only one degree of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abid, M., Mezghani, N., Mitiche, A.: Knee joint biomechanical gait data classification for knee pathology assessment: a literature review. Appl. Bionics Biomech. (2019)

    Google Scholar 

  2. Altamirano, A., Leija, L., Vera, A., Muñoz, R., Valentino, A.: Low cost knee bionic prosthesis based on polycentric mechanisms. In: 2012 Pan American Health Care Exchanges, pp. 89–94 (2012). https://doi.org/10.1109/PAHCE.2012.6233447

  3. Andrysek, J., Naumann, S., Cleghorn, W.L.: Design characteristics of pediatric prosthetic knees. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 369–378 (2004). https://doi.org/10.1109/TNSRE.2004.838444

    Article  Google Scholar 

  4. Bergmann, G., Rohlmann, A., Koelbel, R.: Biomechanics: Basic and Applied Research. Springer, Dordrecht (1987). https://doi.org/10.1007/978-94-009-3355-2

    Book  Google Scholar 

  5. Bernal-Torres, M.G., Medellín-Castillo, H.I., Arellano-González, J.C.: Design and control of a new biomimetic transfemoral knee prosthesis using an echo-control scheme. J. Healthcare Eng. (2018)

    Google Scholar 

  6. Bonasia, D., Rossi, P., Rossi, R.: Anatomy and biomechanics of the knee. In: Margheritini F., Rossi R. (eds.) Orthopedic Sports Medicine, pp. 301–318. Springer, Milano (2011)

    Google Scholar 

  7. Garza-Ulloa, J.: Book: Applied Biomechatronics Using Mathematical Model (2018). https://doi.org/10.1016/B978-0-12-812594-6.00014-7

  8. Gopura, R., Bandara, D., Kiguchi, K., Mann, G.K.: Developments in hardware systems of active upper-limb exoskeleton robots: a review. Robot. Auton. Syst. 75, 203–220 (2016)

    Article  Google Scholar 

  9. Inoue, K., Tanaka, T., Wada, T., Tachiwana, S.: Development of a passive knee mechanism that realizes level walk and stair ascent functions for transfemoral prosthesis. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 522–527 (2016). https://doi.org/10.1109/BIOROB.2016.7523679

  10. Komdeur, P., Pollo, F.E., Jackson, R.W.: Dynamic knee motion in anterior cruciate impairment: a report and case study. In: Baylor University Medical Center Proceedings, vol. 15, pp. 257–259. Taylor & Francis (2002)

    Google Scholar 

  11. Lee, T., Lee, D., Song, B., Baek, Y.S.: Design and control of a polycentric knee exoskeleton using an electro-hydraulic actuator. Sensors 20, 211 (2020)

    Article  Google Scholar 

  12. Niu, Y., Song, Z., Dai, J.S.: Design of the planar compliant five-bar mechanism for self-aligning knee exoskeleton. In: 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR), pp. 1–7 (2018). https://doi.org/10.1109/REMAR.2018.8449858

  13. Olinski, M., Gronowicz, A., Handke, A., Ceccarelli, M.: Design andcharacterization of a novel knee articulation mechanism. Int. J. Appl. Mech. Eng. 21 (2016).https://doi.org/10.1515/ijame-2016-0037

  14. Ponce, D., Martins, D., Roesler, C., Rosa, F., Moré, A.: Modeling of human knee joint in sagittal plane considering elastic behavior of cruciate ligaments (2013). https://doi.org/10.13140/2.1.5077.9847

  15. Pucheta, M., Ulrich, N., Cardona, A.: Combined graph layout algorithms for automated sketching of kinematic chains (2012). https://doi.org/10.1115/DETC2012-70665

  16. Radcliffe, C.W.: Four-bar linkage prosthetic knee mechanisms: kinematics, alignment and prescription criteria. Prosth. Orth. Int. 18, 159–173 (1994)

    Article  Google Scholar 

  17. Ruiz-Diaz, F., Altamirano, A., Valentino-Orozco, G.: External knee prosthesis with four bar linkage mechanism, pp. 1–6 (2016). https://doi.org/10.1109/ICEEE.2016.7751263

  18. Smith, P.N., Refshauge, K.M., Scarvell, J.M.: Development of the concepts of knee kinematics. Arch. Phys. Med. Rehab. 84, 1895–1902 (2003)

    Article  Google Scholar 

  19. Sun, Y., Ge, W., Zheng, J., Dong, D.: Design and evaluation of a prosthetic knee joint using the geared five-bar mechanism. IEEE Trans. Neural Syst. Rehab. Eng. 23, 1031–1038 (2015). https://doi.org/10.1109/TNSRE.2015.2401042

    Article  Google Scholar 

  20. **ao, B., Shao, Y., Zhang, W.: Design and optimization of single-degree-of-freedom six-bar mechanisms for knee joint of lower extremity exoskeleton robot. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2861–2866. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alinne Geronimo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geronimo, A. et al. (2021). Number Synthesis of New Prosthetic Knee Mechanisms. In: Pucheta, M., Cardona, A., Preidikman, S., Hecker, R. (eds) Multibody Mechatronic Systems. MuSMe 2021. Mechanisms and Machine Science, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-030-60372-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60372-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60371-7

  • Online ISBN: 978-3-030-60372-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation