Robotic and Laparoscopic Instrumentation in Pediatric Urology

  • Chapter
  • First Online:
Minimally Invasive and Robotic-Assisted Surgery in Pediatric Urology

Abstract

In this chapter we review instrumentation in pediatric urology for laparoscopic procedures with and without robot assistance. For the da Vinci systems, we discuss the history of platform development and factors important in instrument selection beyond the nominal port size; working distance, instrument selection, and energy delivery systems are reviewed. We focus on systems in widespread use, and introduce several exciting alternatives to the popular systems of today. On the horizon are robotic systems with different docking mechanisms, a variety of instruments, 3 mm trocars, eye-tracking features for camera control, open consoles allowing multiple viewers, and haptic feedback. We pay special attention to single-port laparoscopic surgery. To overcome traditional limitations in triangulation, several deflectable laparoscopic instruments have been developed with differing mechanisms of control, the details of which are especially important to applications in the confined working spaces seen in pediatric urology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hagen ME, Stein H, Curet MJ. Introduction to the robotic system. In: Kim KC, editor. Robotics in general surgery. New York: Springer; 2014. p. 9–15.

    Google Scholar 

  2. Sung GT, Gill IS. Robotic laparoscopic surgery: a comparison of the DA Vinci and Zeus systems. Urology. 2001;58(6):893–8.

    Article  CAS  Google Scholar 

  3. Yates DR, Vaessen C, Roupret M. From Leonardo to da Vinci: the history of robot-assisted surgery in urology. BJU Int. 2011;108(11):1708–13; discussion 14.

    Article  Google Scholar 

  4. Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg JU, et al. Future of robotic surgery in urology. BJU Int. 2017;120(6):822–41.

    Article  Google Scholar 

  5. Gettman M, Rivera M. Innovations in robotic surgery. Curr Opin Urol. 2016;26(3):271–6.

    Article  Google Scholar 

  6. Kallingal GJ, Swain S, Darwiche F, Punnen S, Manoharan M, Gonzalgo ML, et al. Robotic partial nephrectomy with the Da Vinci xi. Adv Urol. 2016;2016:9675095.

    Article  Google Scholar 

  7. Berlinger NT. Robotic surgery--squeezing into tight places. N Engl J Med. 2006;354(20):2099–101.

    Article  CAS  Google Scholar 

  8. Patel MN, Hemal AK. Does advancing technology improve outcomes? Comparison of the Da Vinci standard/S/Si to the ** Robotic Platforms During Robotic Nephroureterectomy. J Endourol. 2018;32(2):133–8.

    Article  Google Scholar 

  9. Meininger DD, Byhahn C, Heller K, Gutt CN, Westphal K. Totally endoscopic Nissen fundoplication with a robotic system in a child. Surg Endosc. 2001;15(11):1360.

    Article  CAS  Google Scholar 

  10. Bruns NE, Soldes OS, Ponsky TA. Robotic surgery may not “make the cut” in pediatrics. Front Pediatr. 2015;3:10.

    Article  Google Scholar 

  11. Chang C, Steinberg Z, Shah A, Gundeti MS. Patient positioning and port placement for robot-assisted surgery. J Endourol. 2014;28(6):631–8.

    Article  Google Scholar 

  12. Howe A, Kozel Z, Palmer L. Robotic surgery in pediatric urology. Asian J Urol. 2017;4(1):55–67.

    Article  Google Scholar 

  13. Finkelstein JB, Levy AC, Silva MV, Murray L, Delaney C, Casale P. How to decide which infant can have robotic surgery? Just do the math. J Pediatr Urol. 2015;11(4):170 e1–4.

    Article  Google Scholar 

  14. Cundy TP, Marcus HJ, Hughes-Hallett A, MacKinnon T, Najmaldin AS, Yang GZ, et al. Robotic versus non-robotic instruments in spatially constrained operating workspaces: a pre-clinical randomized crossover study. BJU Int. 2015;116(3):415–22.

    Article  Google Scholar 

  15. Meehan JJ, Sandler AD. Robotic resection of mediastinal masses in children. J Laparoendosc Adv Surg Tech A. 2008;18(1):114–9.

    Article  Google Scholar 

  16. Thakre AA, Bailly Y, Sun LW, Van Meer F, Yeung CK. Is smaller workspace a limitation for robot performance in laparoscopy? J Urol. 2008;179(3):1138–42; discussion 42–3.

    Article  CAS  Google Scholar 

  17. Ballouhey Q, Clermidi P, Cros J, Grosos C, Rosa-Arsene C, Bahans C, et al. Comparison of 8 and 5 mm robotic instruments in small cavities : 5 or 8 mm robotic instruments for small cavities? Surg Endosc. 2018;32(2):1027–34.

    Article  Google Scholar 

  18. Baek M, Silay MS, Au JK, Huang GO, Elizondo RA, Puttmann KT, et al. Does the use of 5 mm instruments affect the outcomes of robot-assisted laparoscopic pyeloplasty in smaller working spaces? A comparative analysis of infants and older children. J Pediatr Urol. 2018;14:537–e1.

    Article  Google Scholar 

  19. Stephan D, Salzer H, Willeke F. First experiences with the new Senhance(R) telerobotic system in visceral surgery. Visc Med. 2018;34(1):31–6.

    Article  Google Scholar 

  20. Bozzini G, Gidaro S, Taverna G. Robot-assisted laparoscopic partial nephrectomy with the ALF-X robot on pig models. Eur Urol. 2016;69(2):376–7.

    Article  Google Scholar 

  21. Fanfani F, Monterossi G, Fagotti A, Rossitto C, Gueli Alletti S, Costantini B, et al. The new robotic TELELAP ALF-X in gynecological surgery: single-center experience. Surg Endosc. 2016;30(1):215–21.

    Article  Google Scholar 

  22. Gueli Alletti S, Perrone E, Cianci S, Rossitto C, Monterossi G, Bernardini F, et al. 3 mm Senhance robotic hysterectomy: a step towards future perspectives. J Robot Surg. 2018;12(3):575–7.

    Article  Google Scholar 

  23. deBeche-Adams T, Eubanks WS, de la Fuente SG. Early experience with the Senhance(R)-laparoscopic/robotic platform in the US. J Robot Surg. 2018;13:357–9.

    Article  Google Scholar 

  24. Rao PP. Robotic surgery: new robots and finally some real competition! World J Urol. 2018;36(4):537–41.

    Article  Google Scholar 

  25. Chang KD, Abdel Raheem A, Choi YD, Chung BH, Rha KH. Retzius-sparing robot-assisted radical prostatectomy using the Revo-i robotic surgical system: surgical technique and results of the first human trial. BJU Int. 2018;122(3):441–8.

    Article  CAS  Google Scholar 

  26. Kaouk JH, Haber GP, Autorino R, Crouzet S, Ouzzane A, Flamand V, et al. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur Urol. 2014;66(6):1033–43.

    Article  Google Scholar 

  27. Nelson RJ, Chavali JSS, Yerram N, Babbar P, Kaouk JH. Current status of robotic single-port surgery. Urol Ann. 2017;9(3):217–22.

    Article  Google Scholar 

  28. Buffi NM, Lughezzani G, Fossati N, Lazzeri M, Guazzoni G, Lista G, et al. Robot-assisted, single-site, dismembered pyeloplasty for ureteropelvic junction obstruction with the new da Vinci platform: a stage 2a study. Eur Urol. 2015;67(1):151–6.

    Article  Google Scholar 

  29. Schraibman V, Epstein MG, Maccapani GN, Macedo AL. Single-port robotic cholecystectomy. Initial and pioneer experience in Brazil. Einstein (Sao Paulo). 2015;13(4):607–10.

    Article  Google Scholar 

  30. Gonzalez A, Murcia CH, Romero R, Escobar E, Garcia P, Walker G, et al. A multicenter study of initial experience with single-incision robotic cholecystectomies (SIRC) demonstrating a high success rate in 465 cases. Surg Endosc. 2016;30(7):2951–60.

    Article  Google Scholar 

  31. Maurice MJ, Ramirez D, Kaouk JH. Robotic laparoendoscopic single-site retroperitioneal renal surgery: initial investigation of a purpose-built single-port surgical system. Eur Urol. 2017;71(4):643–7.

    Article  Google Scholar 

  32. Anderson PL, Lathrop RA, Webster RJ III. Robot-like dexterity without computers and motors: a review of hand-held laparoscopic instruments with wrist-like tip articulation. Expert Rev Med Devices. 2016;13(7):661–72.

    Article  CAS  Google Scholar 

  33. Fan C, Dodou D, Breedveld P. Review of manual control methods for handheld maneuverable instruments. Minim Invasive Ther Allied Technol. 2013;22(3):127–35.

    Article  Google Scholar 

  34. Frede T, Hammady A, Klein J, Teber D, Inaki N, Waseda M, et al. The radius surgical system - a new device for complex minimally invasive procedures in urology? Eur Urol. 2007;51(4):1015–22; discussion 22.

    Article  Google Scholar 

  35. Heemskerk J, Zandbergen R, Maessen JG, Greve JW, Bouvy ND. Advantages of advanced laparoscopic systems. Surg Endosc. 2006;20(5):730–3.

    Article  CAS  Google Scholar 

  36. Shibao K, Higure A, Yamaguchi K. Laparoendoscopic single-site common bile duct exploration using the manual manipulator. Surg Endosc. 2013;27(8):3009–15.

    Article  Google Scholar 

  37. Hallbeck MS, Lowndes BR, McCrory B, Morrow MM, Kaufman KR, LaGrange CA. Kinematic and ergonomic assessment of laparoendoscopic single-site surgical instruments during simulator training tasks. Appl Ergon. 2017;62:118–30.

    Article  Google Scholar 

  38. Corker HP, Singh P, Sodergren MH, Balaji S, Kwasnicki RM, Darzi AW, et al. A randomized controlled study to establish the effect of articulating instruments on performance in single-incision laparoscopic surgery. J Surg Educ. 2015;72(1):1–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Kurtz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rague, J.T., Kurtz, M.P. (2020). Robotic and Laparoscopic Instrumentation in Pediatric Urology. In: Gargollo, P.C. (eds) Minimally Invasive and Robotic-Assisted Surgery in Pediatric Urology. Springer, Cham. https://doi.org/10.1007/978-3-030-57219-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57219-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57218-1

  • Online ISBN: 978-3-030-57219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation