Current and Upcoming Robotic Surgery Platforms and Adjunctive Technologies

  • Chapter
  • First Online:
Robotic Urologic Surgery

Abstract

Over the last 30 years, laparoscopic surgery has transformed care of patients in urological surgery. Traditional laparoscopy is limited by its 2-dimensional (2D) vision, ergonomics, and limited range of motion. Robotic assistance is the next step in the evolution of laparoscopic surgery with advancements in dexterity and fine motor control alongside the utilization of 3-dimensional (3D) vision. Initially taken up by pelvic urological surgeons it is now commonly used in all major urological abdominal surgery. The original Da Vinci system has been the workhorse of the specialty but recently multiple new systems such as Versius, Senhance, Revo-I, Avatera, Hinotori have entered the market. In this review we highlight the key benefits of robotic surgery and will discuss the pros and cons of each system. We also discuss the future of robotics such as image-guided surgery, Neurosafe, artificial intelligence, telepresence, and haptics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 2001;87(4):408–10.

    CAS  PubMed  Google Scholar 

  2. Koukourikis P, Rha KH. Robotic surgical systems in urology: What is currently available? Investig Clin Urol. 2021;62(1):14–22.

    PubMed  Google Scholar 

  3. DaVinci Surgical System’s world. Available online: www.intuitivesurgical.com.

  4. Heo JE, et al. Pure single-site robot-assisted pyeloplasty with the da Vinci SP surgical system: initial experience. Investig Clin Urol. 2019;60(4):326–30.

    PubMed  PubMed Central  Google Scholar 

  5. Kang SK, et al. Robot-assisted laparoscopic single-port pyeloplasty using the da Vinci SP(R) system: initial experience with a pediatric patient. J Pediatr Urol. 2019;15(5):576–7.

    PubMed  Google Scholar 

  6. Kaouk J, et al. Step-by-step technique for single-port robot-assisted radical cystectomy and pelvic lymph nodes dissection using the da Vinci((R)) SP surgical system. BJU Int. 2019.

    Google Scholar 

  7. Agarwal DK, et al. Initial experience with da Vinci single-port robot-assisted radical prostatectomies. Eur Urol. 2020;77(3):373–9.

    PubMed  Google Scholar 

  8. Billah MS, et al. Single port robotic assisted reconstructive urologic surgery-with the da Vinci SP surgical system. Transl Androl Urol. 2020;9(2):870–8.

    PubMed  PubMed Central  Google Scholar 

  9. Samalavicius NE, et al. Robotic surgery using Senhance((R)) robotic platform: single center experience with first 100 cases. J Robot Surg. 2020;14(2):371–6.

    PubMed  Google Scholar 

  10. Kastelan Z, et al. Extraperitoneal radical prostatectomy with the Senhance Surgical System robotic platform. Croat Med J. 2019;60(6):556–9.

    PubMed  PubMed Central  Google Scholar 

  11. Chang KD, et al. Retzius-sparing robot-assisted radical prostatectomy using the Revo-i robotic surgical system: surgical technique and results of the first human trial. BJU Int. 2018;122(3):441–8.

    CAS  PubMed  Google Scholar 

  12. Kobayashi S, et al. Assessment of surgical skills by using surgical navigation in robot-assisted partial nephrectomy. Int J Comput Assist Radiol Surg. 2019;14(8):1449–59.

    PubMed  Google Scholar 

  13. Thomas BC, et al. Preclinical evaluation of the versius surgical system, a new robot-assisted surgical device for use in minimal access renal and prostate surgery. Eur Urol Focus. 2021;7(2):444–52.

    PubMed  Google Scholar 

  14. Medicaroid. Hinotori robotic assisted surgery system [Internet]. Kobe: Medicaroid; 2020. Accessed 2021 April 9. http://www.medicaroid.com/en/product/hinotori/

  15. Insights on the Surgical Robotic Systems Global Market to 2026 - Industry Analysis and Forecasts. Research and Markets. Accessed 2021 April 9. https://www.researchandmarkets.com/r/hsc5zl

  16. Schlomm T, et al. Neurovascular structure-adjacent frozen-section examination (NeuroSAFE) increases nerve-sparing frequency and reduces positive surgical margins in open and robot-assisted laparoscopic radical prostatectomy: experience after 11,069 consecutive patients. Eur Urol. 2012;62(2):333–40.

    PubMed  Google Scholar 

  17. Taktak S, et al. Aquablation: a novel and minimally invasive surgery for benign prostate enlargement. Ther Adv Urol. 2018;10(6):183–8.

    PubMed  PubMed Central  Google Scholar 

  18. Rassweiler J, et al. Robot-assisted flexible ureteroscopy: an update. Urolithiasis. 2018;46(1):69–77.

    PubMed  Google Scholar 

  19. Miah S, et al. A prospective analysis of robotic targeted MRI-US fusion prostate biopsy using the centroid targeting approach. J Robot Surg. 2020;14(1):69–74.

    PubMed  Google Scholar 

  20. Gutierrez M, Ditto R, Roy S. Systematic review of operative outcomes of robotic surgical procedures performed with endoscopic linear staplers or robotic staplers. J Robot Surg. 2019;13(1):9–21.

    PubMed  Google Scholar 

  21. Johnson CS, et al. Performance of da Vinci Stapler during robotic-assisted right colectomy with intracorporeal anastomosis. J Robot Surg. 2019;13(1):115–9.

    PubMed  Google Scholar 

  22. Galetta D, et al. New stapling devices in robotic surgery. J Vis Surg. 2017;3:45.

    PubMed  PubMed Central  Google Scholar 

  23. Steinberg RL, et al. Magnet-assisted robotic prostatectomy using the da Vinci SP robot: an initial case series. J Endourol. 2019;33(10):829–34.

    PubMed  Google Scholar 

  24. Fulla J, et al. Magnetic-assisted robotic and laparoscopic renal surgery: initial clinical experience with the levita magnetic surgical system. J Endourol. 2020;34(12):1242–6.

    PubMed  PubMed Central  Google Scholar 

  25. Raman A, et al. Robotic-assisted laparoscopic partial nephrectomy in a horseshoe kidney. a case report and review of the literature. Urology. 2018;114:e3–5.

    PubMed  Google Scholar 

  26. Porpiglia F, et al. Hyperaccuracy three-dimensional reconstruction is able to maximize the efficacy of selective clam** during robot-assisted partial nephrectomy for complex renal masses. Eur Urol. 2018;74(5):651–60.

    PubMed  Google Scholar 

  27. Porpiglia F, et al. Three-dimensional virtual imaging of renal tumours: a new tool to improve the accuracy of nephrometry scores. BJU Int. 2019;124(6):945–54.

    PubMed  Google Scholar 

  28. Bianchi L, et al. The impact of 3D digital reconstruction on the surgical planning of partial nephrectomy: a case-control study. Still time for a novel surgical trend? Clin Genitourin Cancer. 2020;18(6):e669–78.

    PubMed  Google Scholar 

  29. Chandak P, et al. Three-dimensional printing in robot-assisted radical prostatectomy - an Idea, Development, Exploration, Assessment, Long-term follow-up (IDEAL) Phase 2a study. BJU Int. 2018;122(3):360–1.

    PubMed  Google Scholar 

  30. MIMIC Technolgies. Available at mimicsimulation.com. Accessed April 9 2021.

  31. Moglia A, et al. A systematic review of virtual reality simulators for robot-assisted surgery. Eur Urol. 2016;69(6):1065–80.

    PubMed  Google Scholar 

  32. Mehralivand S, et al. A multiparametric magnetic resonance imaging-based virtual reality surgical navigation tool for robotic-assisted radical prostatectomy. Turk J Urol. 2019;45(5):357–65.

    PubMed  PubMed Central  Google Scholar 

  33. Porpiglia F, et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D) technology: a radiological and pathological study. BJU Int. 2019;123(5):834–45.

    PubMed  Google Scholar 

  34. Porpiglia F, et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol. 2019;76(4):505–14.

    PubMed  Google Scholar 

  35. Porpiglia F, et al. Three-dimensional augmented reality robot-assisted partial nephrectomy in case of complex tumours (PADUA >/=10): a new intraoperative tool overcoming the ultrasound guidance. Eur Urol. 2020;78(2):229–38.

    PubMed  Google Scholar 

  36. Baghdadi A, et al. A computer vision technique for automated assessment of surgical performance using surgeons’ console-feed videos. Int J Comput Assist Radiol Surg. 2019;14(4):697–707.

    PubMed  Google Scholar 

  37. Chen J, et al. Use of automated performance metrics to measure surgeon performance during robotic vesicourethral anastomosis and methodical development of a training tutorial. J Urol. 2018;200(4):895–902.

    PubMed  Google Scholar 

  38. Di Cosmo G, et al. Intraoperative ultrasound in robot-assisted partial nephrectomy: state of the art. Arch Ital Urol Androl. 2018;90(3):195–8.

    PubMed  Google Scholar 

  39. Alenezi AN, Karim O. Role of intra-operative contrast-enhanced ultrasound (CEUS) in robotic-assisted nephron-sparing surgery. J Robot Surg. 2015;9(1):1–10.

    PubMed  PubMed Central  Google Scholar 

  40. Rao AR, et al. Occlusion angiography using intraoperative contrast-enhanced ultrasound scan (CEUS): a novel technique demonstrating segmental renal blood supply to assist zero-ischaemia robot-assisted partial nephrectomy. Eur Urol. 2013;63(5):913–9.

    PubMed  Google Scholar 

  41. Diana P, et al. the role of intraoperative indocyanine green in robot-assisted partial nephrectomy: results from a large, multi-institutional series. Eur Urol. 2020;78(5):743–9.

    PubMed  Google Scholar 

  42. Bjurlin MA, et al. Near-infrared fluorescence imaging: emerging applications in robotic upper urinary tract surgery. Eur Urol. 2014;65(4):793–801.

    PubMed  Google Scholar 

  43. Lee Z, et al. Use of indocyanine green during robot-assisted ureteral reconstructions. Eur Urol. 2015;67(2):291–8.

    PubMed  Google Scholar 

  44. Tuderti G, et al. Transnephrostomic indocyanine green-guided robotic ureteral reimplantation for benign ureteroileal strictures after robotic cystectomy and intracorporeal neobladder: step-by-step surgical technique, perioperative and functional outcomes. J Endourol. 2019;33(10):823–8.

    PubMed  Google Scholar 

  45. Kumar A, Samavedi S, Bates A. Use of intra-operative indocyanine green and Firefly technology to visualize the “landmark artery” for nerve sparing robot assisted radical prostatectomy. Eur Urol Suppl. 2015;2(14):eV36.

    Google Scholar 

  46. Tobis S, et al. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol. 2011;186(1):47–52.

    PubMed  Google Scholar 

  47. van den Berg NS, et al. Multispectral fluorescence imaging during robot-assisted laparoscopic sentinel node biopsy: a first step towards a fluorescence-based anatomic roadmap. Eur Urol. 2017;72(1):110–7.

    PubMed  Google Scholar 

  48. Manny TB, Krane LS, Hemal AK. Indocyanine green cannot predict malignancy in partial nephrectomy: histopathologic correlation with fluorescence pattern in 100 patients. J Endourol. 2013;27(7):918–21.

    PubMed  PubMed Central  Google Scholar 

  49. Mattevi D, et al. Fluorescence-guided selective arterial clam** during RAPN provides better early functional outcomes based on renal scan compared to standard clam**. J Robot Surg. 2019;13(3):391–6.

    PubMed  Google Scholar 

  50. Borofsky MS, et al. Near-infrared fluorescence imaging to facilitate super-selective arterial clam** during zero-ischaemia robotic partial nephrectomy. BJU Int. 2013;111(4):604–10.

    PubMed  Google Scholar 

  51. Krane LS, Hemal AK. Surgery: Is indocyanine green dye useful in robotic surgery? Nat Rev Urol. 2014;11(1):12–4.

    PubMed  Google Scholar 

  52. Simone G, et al. “Ride the green light”: indocyanine green-marked off-clamp robotic partial nephrectomy for totally endophytic renal masses. Eur Urol. 2019;75(6):1008–14.

    PubMed  Google Scholar 

  53. Chennamsetty A, et al. Lymph node fluorescence during robot-assisted radical prostatectomy with indocyanine green: prospective dosing analysis. Clin Genitourin Cancer. 2017;15(4):e529–34.

    PubMed  Google Scholar 

  54. KleinJan GH, et al. Multimodal hybrid imaging agents for sentinel node map** as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery. Eur J Nucl Med Mol Imaging. 2016;43(7):1278–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Meershoek P, et al. Robot-assisted laparoscopic surgery using DROP-IN radioguidance: first-in-human translation. Eur J Nucl Med Mol Imaging. 2019;46(1):49–53.

    CAS  PubMed  Google Scholar 

  56. Maurer T, et al. (99m)Technetium-based prostate-specific membrane antigen-radioguided surgery in recurrent prostate cancer. Eur Urol. 2019;75(4):659–66.

    PubMed  Google Scholar 

  57. Rauscher I, Eiber M, Maurer T. PSMA-radioguided surgery for salvage lymphadenectomy in recurrent prostate cancer. Aktuelle Urol. 2017;48(2):148–52.

    PubMed  Google Scholar 

  58. Beyer B, et al. A feasible and time-efficient adaptation of NeuroSAFE for da Vinci robot-assisted radical prostatectomy. Eur Urol. 2014;66(1):138–44.

    PubMed  Google Scholar 

  59. Mirmilstein G, et al. The neurovascular structure-adjacent frozen-section examination (NeuroSAFE) approach to nerve sparing in robot-assisted laparoscopic radical prostatectomy in a British setting - a prospective observational comparative study. BJU Int. 2018;121(6):854–62.

    CAS  PubMed  Google Scholar 

  60. Fromont G, et al. Intraoperative frozen section analysis during nerve sparing laparoscopic radical prostatectomy: feasibility study. J Urol. 2003;170(5):1843–6.

    PubMed  Google Scholar 

  61. Heinrich E, et al. Clinical impact of intraoperative frozen sections during nerve-sparing radical prostatectomy. World J Urol. 2010;28(6):709–13.

    PubMed  Google Scholar 

  62. Gillitzer R, et al. Intraoperative peripheral frozen sections do not significantly affect prognosis after nerve-sparing radical prostatectomy for prostate cancer. BJU Int. 2011;107(5):755–9.

    PubMed  Google Scholar 

  63. Dinneen E, et al. NeuroSAFE robot-assisted laparoscopic prostatectomy versus standard robot-assisted laparoscopic prostatectomy for men with localised prostate cancer (NeuroSAFE PROOF): protocol for a randomised controlled feasibility study. BMJ Open. 2019;9(6):e028132.

    PubMed  PubMed Central  Google Scholar 

  64. Lopez A, et al. Intraoperative optical biopsy during robotic assisted radical prostatectomy using confocal endomicroscopy. J Urol. 2016;195(4 Pt 1):1110–7.

    PubMed  Google Scholar 

  65. Puliatti S, et al. Ex vivo fluorescence confocal microscopy: the first application for real-time pathological examination of prostatic tissue. BJU Int. 2019;124(3):469–76.

    PubMed  Google Scholar 

  66. Rocco B, et al. Real-time assessment of surgical margins during radical prostatectomy: a novel approach that uses fluorescence confocal microscopy for the evaluation of peri-prostatic soft tissue. BJU Int. 2020;125(4):487–9.

    PubMed  Google Scholar 

  67. Kim SSY, Dohler M, Dasgupta P. The Internet of Skills: use of fifth-generation telecommunications, haptics and artificial intelligence in robotic surgery. BJU Int. 2018;122(3):356–8.

    PubMed  Google Scholar 

  68. Maier-Hein L, et al. Surgical data science for next-generation interventions. Nat Biomed Eng. 2017;1(9):691–6.

    PubMed  Google Scholar 

  69. Birkmeyer JD, et al. Surgical skill and complication rates after bariatric surgery. N Engl J Med. 2013;369(15):1434–42.

    CAS  PubMed  Google Scholar 

  70. Nathwani JN, et al. Relationship between technical errors and decision-making skills in the junior resident. J Surg Educ. 2016;73(6):e84–90.

    PubMed  PubMed Central  Google Scholar 

  71. Vedula SS, Ishii M, Hager GD. Objective assessment of surgical technical skill and competency in the operating room. Annu Rev Biomed Eng. 2017;19:301–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Greenberg CC, et al. Surgical coaching for individual performance improvement. Ann Surg. 2015;261(1):32–4.

    PubMed  Google Scholar 

  73. Singh P, et al. A randomized controlled study to evaluate the role of video-based coaching in training laparoscopic skills. Ann Surg. 2015;261(5):862–9.

    PubMed  Google Scholar 

  74. Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol. 2009;19(1):102–7.

    PubMed  PubMed Central  Google Scholar 

  75. Svoboda E. Your robot surgeon will see you now. Nature. 2019;573(7775):S110–1.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sapre, N., Shah, T.T., Dasgupta, P. (2022). Current and Upcoming Robotic Surgery Platforms and Adjunctive Technologies. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation