Applications of Macrophytes as Environmentally Sound Technique for Cleaning of Contaminated Ecosystems

  • Chapter
  • First Online:
Bioremediation and Biotechnology, Vol 3

Abstract

Water is an important resource that supports life on the earth. Contamination with diverse categories of pollutants (toxic metals, agrochemicals, synthetic pesticides, and organic substances) has drastically altered the quality of aquatic ecosystems. Undoubtedly, there are numerous technologies and approaches to deal with menace of contamination in aquatic environs. Nowadays, application of aquatic plants (macrophytes) has been proven to be a safe and viable technology for degradation and cleaning of harmful and toxic substances from aquatic environs both naturally as well as experimentally. Macrophytes are important in reducing the pollution level of aquatic ecosystems. They have the capacity to improve the water quality by removing nutrients, heavy metals, toxic organics, suspended solids, and other pollutants from contaminated wastewaters, thus plays an important role in purification of wastewater. Furthermore, macrophyte component of aquatic environment helps indirectly in metal retention by slowing the water current to sediment and suspend heavy metals. These aquatic plants could be applied as an effective, efficient, and choice to clean the wastewaters contaminated with metals, nutrients, and pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas HS, Ahmed AM, Tariq JA (2013) Multicomponent biosorption of heavy metals using fluidized bed of algal biomass. J Eng 19(4):469–484

    Google Scholar 

  • Ahmad A, Bhat AH, Buang A (2018) Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: kinetic and equilibrium modeling. J Clean Prod 171:1361–1375

    Article  CAS  Google Scholar 

  • Alaa MY, Elsayed MAN (2015) Heavy metals and nutritional composition of some naturally growing aquatic macrophytes of Northern Egyptian Lakes. J Biodivers Environ Sci 6(3):16–23

    Google Scholar 

  • Alley BL, Willis B, Rodgers J Jr, Castle JW (2013) Seasonal performance of a hybrid pilot-scale constructed wetland treatment system for simulated fresh oil field-produced water. Water Air Soil Pollut 224:1–15

    Article  CAS  Google Scholar 

  • Almuktar SAAAN, Abed SN, Scholz M (2018) Wetlands for wastewater treatment and subsequent recycling of treated effluent: a review. Environ Sci Pollut Res 25:23595–23623

    Article  CAS  Google Scholar 

  • André I, Schneider H, Rubio J (1999) Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes. Environ Sci Technol 33:2213–2217

    Article  Google Scholar 

  • Annelies J, Veraart Wilco JJ, de Bruijne Jeroen JM, de Klein ETHM, Scheffer PM (2011) Effects of aquatic vegetation type on denitrification. Biogeochemistry 104:267–274

    Article  Google Scholar 

  • Arul Manikandan N, Alemu AK, Goswami L, Pakshirajan K, Pugazhenthi G (2016) Waste litchi peels for Cr (VI) removal from synthetic wastewater in batch and continuous systems: sorbent characterization, regeneration and reuse study. J Environ Eng 142(9):C4016001

    Article  CAS  Google Scholar 

  • Ayaz S, AktaÅŸ Ö, Fındık N et al (2012) Effect of recirculation on nitrogen removal in a hybrid constructed wetland system. Ecol Eng 40:1–5

    Article  Google Scholar 

  • Banerjee G, Sarkar S (1997) The role of Salvinia rotundifolia in scavenging aquatic Pb (II) pollution: a case study. Bioprocess Eng 17:295–300

    CAS  Google Scholar 

  • Barko JW, Gunnison D, Carpenter SR (1991) Sediment interactions with submersed macrophyte growth and community dynamics. Aquat Bot 41:41–65

    Article  Google Scholar 

  • Basile A, Sorbo S, Conte B, Cobianchi RC, Trinchella F, Capasso C, Carginale V (2012) Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Internat J Phytoremediat 14(4):374–387

    Article  CAS  Google Scholar 

  • Baskar G, Deeptha VT, Rahman AA (2009) Treatment of wastewater from kitchen in an institution hostel mess using constructed wetland. Intl J Recent Trends Eng 1(6):54–58

    Google Scholar 

  • Bind A, Goswami L, Prakash V (2018) Comparative analysis of floating and submerged macrophytes for heavy metal (copper, chromium, arsenic and lead) removal: sorbent preparation, characterization, regeneration and cost estimation. Geol Ecol Landsc 2(2):61–72

    Article  Google Scholar 

  • Bindu T, Sylas VP, Mahesh M, Rakesh PS, Ramasamy EV (2008) Pollutant removal from domestic wastewater with Taro (Colocasia esculenta) planted in a subsurface flow system. Ecol Eng 33(1):68–82

    Article  Google Scholar 

  • Bindu T, Sumi MM, Ramasamy EV (2010) Decontamination of water polluted by heavy metals with Taro (Colocasia esculenta) cultured in a hydroponic NFT system. Environmentalist 30(1):35–44

    Article  Google Scholar 

  • Boerema A, Schoelynck J, Bal K, Vrebos D, Jacobs S, Staes J, Meire P (2014) Economic valuation of ecosystem services, a case study for aquatic vegetation removal in the Nete catchment (Belgium). Ecosyst Serv 7:46–56

    Article  Google Scholar 

  • Bolpagni R, Pierobon E, Longhi D, Nizzoli D, Bartoli M, Tomaselli M, Viaroli P (2007) Diurnal exchanges of CO2 and CH4 across the water-atmosphere interface in a water chestnut meadow (Trapa natans L.). Aquat Bot 87:43–48

    Article  CAS  Google Scholar 

  • Brisson J, Chazarenc F (2009) Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? Sci Total Environ 407:3923–3930

    Article  CAS  PubMed  Google Scholar 

  • Brix H (1994) Functions of macrophytes in constructed wetlands. Water Sci Technol 29:71–78

    Article  CAS  Google Scholar 

  • Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35:11–17

    Article  CAS  Google Scholar 

  • Brix H, Arias CA (2005) The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: new Danish guidelines. Ecol Eng 25:491–500

    Article  Google Scholar 

  • Brix H, Schierup HH (1989) The use of aquatic macrophytes in water-pollution control. Ambio 18(2):100–107

    Google Scholar 

  • Brown JJ, Glenn EP, Fitzsimmons KM, Smith SE (1999) Halophytes for the treatment of saline aquaculture effluent. Aquaculture 175:255–268

    Article  CAS  Google Scholar 

  • Caldelas C et al (2009) Physiological responses of Eichhornia crassipes (Mart.) Solms to the combined exposure to excesso nutrientes and Hg. Braz J Plant Physiol 21(1):1–12

    Article  Google Scholar 

  • Castaldelli G, Soana E, Racchetti E, Vincenzi F, Fano EA, Bartoli M (2015) Vegetated canals mitigate nitrogen surplus in agricultural watersheds. Agric Ecosyst Environ 212:253–262

    Article  CAS  Google Scholar 

  • Cheng J, Bergmann BA, Classen JJ, Stomp AM, Howard JW (2002) Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresour Technol 81(1):81–85

    Article  CAS  PubMed  Google Scholar 

  • Collins BS, Sharitz RR, Coughlin DP (2005) Elemental composition of native wetland plants in constructed mesocosm treatment wetlands. Bioresour Technol 96(8):937–948

    Article  CAS  PubMed  Google Scholar 

  • Comino E, Riggio V, Rosso M (2013) Grey water treated by an hybrid constructed wetland pilot plant under several stress conditions. Ecol Eng 53:120–125

    Article  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266

    Article  CAS  Google Scholar 

  • Coutinho SN et al (2017) Estudo de bioacumulação de elementos potencialmente tóxicos em amostras de macrófitas aquáticas flutuantes do reservatório Guarapiranga, São Paulo. IPEN/CNEN/CETESB, Rio de Janeiro

    Google Scholar 

  • Cruz MB et al (2009) Absorção De Metais Pesados Presentes Em Efluente De Mineração Por Pistia stratiotes. In: IX Congresso de Ecologia do Brasil. São Lourenço, MG. pp 13–17

    Google Scholar 

  • Demırezen D, Aksoy A (2004) Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere 56(7):685–696

    Article  PubMed  CAS  Google Scholar 

  • Demirezen D, Aksoy A, Uruc K (2007) Effect of population density on growth, biomass and nickel accumulation capacity of Lemna gibba (Lemnaceae). Chemosphere 66:553–557

    Article  CAS  PubMed  Google Scholar 

  • Dhote S, Dixit S (2007) Water quality improvement through macrophytes: a case study. Asian J Exp Sci 21(2):427–430

    Google Scholar 

  • Dhote S, Dixit S (2009a) Water quality improvement through macrophytes- a case study. Asian J Exp Sci 21(2):423–430

    Google Scholar 

  • Dhote S, Dixit S (2009b) Water quality improvement through macrophytes-a review. Environ Monit Assess 152(1-4):149–153

    Article  CAS  PubMed  Google Scholar 

  • Dierberg FE, DeBusk TA, Jackson SD, Chimney MJ, Pietro K (2002) Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading. Water Res 36:1409–1422

    Article  CAS  PubMed  Google Scholar 

  • Dipu S, Anju A, Kumar V, Thanga SG (2010) Phytoremediation of dairy effluent by constructed wetland technology using wetland macrophytes. Global J Environ Res 4(2):90–100

    CAS  Google Scholar 

  • Dogan M, Saygideger SD, Colak U (2009) Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull Environ Contam Toxicol 83(2):249–254

    Article  CAS  PubMed  Google Scholar 

  • Doke KM, Yusufi M, Joseph RD, Khan EM (2012) Biosorption of hexavalent chromium onto wood apple shell: equilibrium, kinetic and thermodynamic studies. Desalin Water Treat 50:170–179

    Article  CAS  Google Scholar 

  • Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Liang S, Zhang B (2012) Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy. Environ Sci Pollut Res 20:2448–2455

    Article  CAS  Google Scholar 

  • Fan J, Wang W, Zhang B et al (2013) Nitrogen removal in intermittently aerated vertical flow constructed wetlands: impact of influent COD/N ratios. Bioresour Technol 143:461–466

    Article  CAS  PubMed  Google Scholar 

  • Filho PJS, Nunes LV, da Rosa NN, Betemps GR, Pereira RS (2015) Comparison among native floating aquatic macrophytes for bioconcentration of heavy metals. Ecotoxicol Environ Contam 10(1):1–6

    Google Scholar 

  • Fraser LH, Carty SM, Steer D (2004) A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresour Technol 94:185–192

    Article  CAS  PubMed  Google Scholar 

  • Fritioff Ã…, Greger M (2006) Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere 63(2):220–227

    Article  CAS  PubMed  Google Scholar 

  • Gersberg RM, Elkins BV, Lyon SR, Goldman CR (1986) Role of aquatic plants in waste-water treatment by artificial wetlands. Water Res 20:363–368

    Article  CAS  Google Scholar 

  • Gikas GD, Tsihrintzis VA (2010) On-site treatment of domestic wastewater using a small-scale horizontal subsurface flow constructed wetland. Water Sci Technol 62:603–614

    Article  CAS  PubMed  Google Scholar 

  • Golda AE, Poyyamoli G, Nandhivarman M (2014) Efficacy of phytoremediation potential of aquatic macrophytes for its applicability in treatment wetlands: a review of developments and research. Int J Water Res Environ Eng 6(10):267–278

    CAS  Google Scholar 

  • Goswami L, Manikandan NA, Pakshirajan K, Pugazhenthi G (2017) Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus. Biotech 7(1):37

    Google Scholar 

  • Goswami L, Kumar RV, Pakshirajan K, Pugazhenthi G (2019) A novel integrated biodegradation-microfiltration system for sustainable wastewater treatment and energy recovery. J Hazard Mater 365:707–715

    Article  CAS  PubMed  Google Scholar 

  • Gu B, Chimney MJ, Newman J et al (2006) Limnological characteristics of a subtropical constructed wetland in south Florida (USA). Ecol Eng 27:345–360

    Article  Google Scholar 

  • Ha NTH, Sakakibara M, Sano S (2011) Accumulation of Indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining. Bioresour Technol 102:2228–2234

    Article  PubMed  CAS  Google Scholar 

  • Hadad HR, Maine MA, Bonetto CA (2006) Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere 63:1744–1753

    Article  CAS  PubMed  Google Scholar 

  • Hamidian AH, Atashgahi M, Khorasani N (2014) Phytoremediation of heavy metals (Cd, Pb and V) in gas refinery wastewater using common reed (Phragmites australis). Int J Aquat Biol 2(1):29–35

    Google Scholar 

  • Hammer DA, Bastian RK (1989) Wetland ecosystems: natural water purifiers? In: Hammer DA (ed) Constructed wetlands for wastewater treatment: municipal, industrial and agricultural. Lewis Publishers, Chelsea, pp 5–20

    Google Scholar 

  • Harguinteguy CA, Cirelli AF, Pignata MI (2014) Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía river (Argentina). Microchem J 114:111–118

    Article  CAS  Google Scholar 

  • Hoffmann H, Platzer C, Winker M et al (2011) Technology review of constructed wetlands—subsurface flow constructed wetlands for greywater and domestic wastewater treatment. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Eschborn

    Google Scholar 

  • Hummel M, Kiviat E (2004) Review of world literature on water chestnut with implications for management in North America. Jr Aquat Plant Manage 42:17–28

    Google Scholar 

  • Irfan S, Shardendu (2009) Dynamics of nitrogen in subtropical wetland and its uptake and storage by aquatic plants: studies on duckweed and water velvet. Biol Wastes 28(2):115–126

    Google Scholar 

  • Jain SK, Vasudevan P, Jha NK (1989) Removal of some heavy meals from polluted water by aquatic plants: studies on duckweed and water velvet. Biol Wastes 28(2):115–126

    Article  CAS  Google Scholar 

  • Jordan SJ, Stoffer J, Nestlerode JA (2011) Wetlands as sinks for reactive nitrogen at continental and global scales: a meta-analysis. Ecosystems 14:144–155

    Article  CAS  Google Scholar 

  • Jumbo MDCJ, Campoverde EDF (2012) Fitorremediación mediante el uso de dos espécies vegetales Lemna minor (Lenteja de agua) y Eichornia crassipes (Jacinto de agua) em aguas residuales produto de la actividad minera. Universidad Politécnica Salesiana, Cuenca

    Google Scholar 

  • Juwarkar AS, Oke B, Juwarkar A, Patnaik SM (1995) Domestic wastewater treatment through constructed wetland in India. Water Sci Technol 32(3):291–294

    Article  CAS  Google Scholar 

  • Kadlec R, Knight R (1996) Treatment wetlands. Lewis Publishers, Boca Raton

    Google Scholar 

  • Kadlec RH, Wallace S (2008) Treatment wetlands, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kalff J (2002) Limnology: inland water ecosystems. Prentice-Hall, Saddle River, p 592

    Google Scholar 

  • Kamarudzaman AN, Ismail NS, Aziz RA, AbJalil MF (2011) Removal of nutrients from landfill leachate using subsurface flow constructed wetland planted with Limnocharis flava and Scirpus atrovirens. In: Intern. Conference on Environ. and Computer Sci., vol 19. IPCBEE/IACSIT Press, Singapore, pp 79–83

    Google Scholar 

  • Kamiyango MW, Sajidu SMI, Masamba WRL (2011) Removal of phosphate ions from aqueous solutions using bauxite obtained from Mulanje, Malawi. Afr J Biotechnol 10(56):11972–11982

    CAS  Google Scholar 

  • Kantawanichkul S, Kladprasert S, Brix H (2009) Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus. Ecol Eng 35:238–247

    Article  Google Scholar 

  • Karathanasis AD, Potter CL, Coyne MS (2003) Vegetation effects on fecal bacteria, bod, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecol Eng 20:157–169

    Article  Google Scholar 

  • Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M, Forster CF (2003) Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum) process. Biochemist 39:179–183

    CAS  Google Scholar 

  • Keskinkan O, Goksu MZL, Basibuyuk M, Forster CF (2004) Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol 92:197–200

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Hesham AEL, Qiao M, Rehman S, He JZ (2010) Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res 17:288–296

    Article  CAS  Google Scholar 

  • Khatiwada NR, Polprasert C (1999) Assessment of effective specific surface area for free water surface wetlands. Water Sci Technol 40:83–89

    Article  CAS  Google Scholar 

  • Khurana MPS, Pritpal S (2012) Waste water use in crop production: a review. Resour Environ 2:116–131

    Article  Google Scholar 

  • Klapper H (1991) Control of eutrophication in inland waters. Prentice Hall, Chichester

    Google Scholar 

  • Knowles P, Dotro G, Nivala J et al (2011) Clogging in subsurface-flow treatment wetlands: occurrence and contributing factors. Ecol Eng 37:99–112

    Article  Google Scholar 

  • Ko CH, Lee TM, Chang FC et al (2011) The correlations between system treatment efficiencies and aboveground emergent macrophyte nutrient removal for the Hsin-Hai Bridge phase II constructed wetland. Bioresour Technol 102:5431–5437

    Article  CAS  PubMed  Google Scholar 

  • Konnerup D, Koottatep T, Brix H (2009) Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecol Eng 35:248–257

    Article  Google Scholar 

  • Kronvang B, Jeppesen E, Conley DJ, Søndergaard M, Larsen SE, Ovesen NB, Carstensen J (2005) Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. J Hydrol 304:274–288

    Article  CAS  Google Scholar 

  • Kulasekaran A, Gopal A, Alexander J (2014) A study on the removal efficiency of organic load and some nutrients from sewage by Ceratophyllum Demersum L. J Mater Environ Sci 5(3):859–864

    Google Scholar 

  • Kumar PA (2015) Waste water management through aquatic macrophytes. Int Res J Environ Sci 4(3):41–46

    Google Scholar 

  • Kumar JIN, Soni H, Kumar RN, Bhatt I (2008) Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej community reserve, Gujarat, India. Turk J Fish Aquat Sci 8:193–200

    Google Scholar 

  • Kumari S, Kumar B, Sheel R (2016) Bioremediation of heavy metals by serious aquatic weed, Salvinia. Int J Curr Microbiol App Sci 5(9):355–368

    Article  CAS  Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Gautam A (2015) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environ Rev 23:1–13

    Article  Google Scholar 

  • Kushwaha A, Rani R, Kumar S (2017) Mechanism of soil-metal-microbe interactions and their implication on microbial bioremediation and phytoremediation. In: Kumar P, Gurjar BR, Govil JN (eds) Environmental science and engineering. Biodegradation and bioremediation, vol 8, 1st edn. Studium Press LLC, New Delhi

    Google Scholar 

  • Kushwaha A, Hans N, Rani R, Kumar S (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Lacher C, Smith RW (2002) Sorption of Hg(II) by Potamogeton natans dead biomass. Min Eng 15:187–191

    Article  CAS  Google Scholar 

  • Langergraber G, Prandtstetten C, Pressl A et al (2007) Optimization of subsurface vertical flow constructed wetlands for wastewater treatment. Water Sci Technol 55:71–78

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Scholz M (2007) What is the role of Phragmites australis in experimental constructed wetland filters treating urban runoff? Ecol Eng 29:87–95

    Article  Google Scholar 

  • Lesage E, Mundia C, Rousseau DPL, Van de Moortel AMK, Du Laing G, Meers E et al (2007) Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng 30:320–325

    Article  Google Scholar 

  • Li C, Wu S, Dong R (2015) Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland. J Environ Manag 151:310–316

    Article  CAS  Google Scholar 

  • Lin Y, **g S, Wang T, Lee D (2002) Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environ Pollut 119:413

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu YH, Liu CX et al (2013) Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecol Eng 53:138–143

    Article  Google Scholar 

  • Loveson A, Sivalingam R, Syamkumar R (2013) Aquatic macrophyte Spirodela polyrrhiza as a phytoremediation tool in polluted wetland water from eloor, Ernakulam District, Kerala. J Environ Anal Toxicol 3(184):2161–0525

    Google Scholar 

  • Lu XM, Huang MS (2010) Nitrogen and phosphorus removal and physiological response in aquatic plants under aeration conditions. Internt J Environ Sci Tech 7(4):665–674

    Article  CAS  Google Scholar 

  • Maehata M (2008) Lake Biwa: interaction between nature and people. Springer, New York

    Google Scholar 

  • Martin AP, Turnbull RE, Rissmann CW, Rieger P (2017) Heavy metal and metalloid concentrations in soils under pasture of southern New Zealand. Geoderma Reg 11:18–27

    Article  Google Scholar 

  • McFarland DG, Nelson LS, Grodowitz MJ, Smart RM, Owens CS (2004) Salvinia molesta DS Mitchell (Giant Salvinia) in the United States: a review of species ecology and approaches to management (No. ERDC/EL-SR-04-2), Engineer Research and Development Center Vicksburg MS Environmental Lab

    Google Scholar 

  • Meheesan PM, Srinikethan G, Harikumar PS (2011) Performance evaluation of integrated treatment plant of trickling filter and constructed wetland. Int J Eng Sci Technol 3(1):305–317

    Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Mitsch WJ, Zhang L, Anderson CJ, Altor AE, Hernandez ME (2005) Creating riverine wetlands: ecological succession, nutrient retention, and pulsing effects. Ecol Eng 25:510–527

    Article  Google Scholar 

  • Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336(1-3):81–89

    Article  CAS  PubMed  Google Scholar 

  • Mkandawire M, Taubert B, Dudel EG (2004) Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Internat J of Phytoremediat 6(4):347–362

    Article  CAS  Google Scholar 

  • Moshiri GA (1993) Constructed wetlands for water quality improvement. CRC Press, Boca Raton

    Google Scholar 

  • Nahlik AM, Mitsch WJ (2006) Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecol Eng 28:246–257

    Article  Google Scholar 

  • Ngayila N, Basly J-P, Lejeune A-H, Botineau M, Baudu M (2007) Myriophyllum alterniflorum DC., biomonitor of metal pollution and water quality, sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure. Sci Total Environ 373:564–571

    Article  CAS  PubMed  Google Scholar 

  • Nivala J, Wallace S, Headley T et al (2013) Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecol Eng 61:544–554

    Article  Google Scholar 

  • Nyquist J, Greger M (2007) Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ Exp Bot 60:219–226

    Article  CAS  Google Scholar 

  • Odjegba VJ, Fasidi IO (2004) Accumulation of trace elements by Pistia stratiotes: Implications for phytoremediation. Ecotoxicology 13(7):637–646

    Article  CAS  PubMed  Google Scholar 

  • OECD (2002) Guidelines for the testing of chemicals, Lemna sp. Growth inhibition test, draft guideline, 221

    Google Scholar 

  • Ong SA, Uchiyama K, Inadama D et al (2010) Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresour Technol 101:7239–7244

    Article  CAS  PubMed  Google Scholar 

  • Padial AA, Bini LM, Thomaz SM (2008) The study of aquatic macrophytes in Neotropics: a scientometrical view of the main trends and gaps. Braz J Biol 68(4):1051–1059

    Article  CAS  PubMed  Google Scholar 

  • Paing J, Guilbert A, Gagnon V et al (2015) Effect of climate, wastewater composition, loading rates, system age and design on performances of French vertical flow constructed wetlands: a survey based on 169 full scale systems. Ecol Eng 80:46–52

    Article  Google Scholar 

  • Peng K, Luo C, Lou I (2008) Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ 392(1):22–29

    Article  CAS  PubMed  Google Scholar 

  • Petticrew EL, Kalff J (1992) Water-flow and clay retention in submerged macrophyte beds. Can J Fish Aquat Sci 49:2483–2489

    Article  Google Scholar 

  • Pieczynska E (1990) Lentic aquatic terrestrial ecotones: their structure functions and importance. In: Naiman RJ, Decamps H (eds) The ecology and management of aquatic terrestrial ecotones. Man and the biosphere series. The Parthenon Publishing Group, Paris, pp 103–140

    Google Scholar 

  • Prabu PC, Udayasoorian CU (2007) Treatment of pulp and paper mill effluent using constructed Wetland. EJEAFChe 6(1):1689–1701

    CAS  Google Scholar 

  • Pretty JN, Mason CF, Nedwell DB, Hine RE, Leaf S, Dils R (2003) Environmental costs of freshwater eutrophication in England and Wales. Environ Sci Technol 37:201–208

    Article  CAS  PubMed  Google Scholar 

  • Prusty BAK, Azeez PA, Jagadeesh EP (2007) Alkali and transition metals in macrophytes of a wetland system. Bull Environ Contam Toxicol 78:405–410

    Article  CAS  PubMed  Google Scholar 

  • Rai PK (2008) Technical note: phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremediation 10(5):430–439

    Article  CAS  PubMed  Google Scholar 

  • Rai UN, Sinha S, Tripathi RD, Chandra P (1995) Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Eng 5(1):5–12

    Article  Google Scholar 

  • Rana S, Jana J, Bag SK, Mukherjee S, Biswas JK, Ganguly S, Sarkar D, Jana BB (2011) Performance of constructed wetlands in the reduction of cadmium in a sewage treatment cum fish farm at Kalyani, West Bengal, India. Ecol Eng 37:2096–2100

    Article  Google Scholar 

  • Reyes-Contreras C, Matamoros V, Ruiz I et al (2011) Evaluation of PPCPs removal in a combined anaerobic digester-constructed wetland pilot plant treating urban wastewater. Chemosphere 84:1200–1207

    Article  CAS  PubMed  Google Scholar 

  • Richardson CJ (1989) Freshwater wetlands: transformers, filters, or sinks. Freshwater wetlands and wildlife, United States. Department of Environment, Office of Scientific and Technical Information, Oak Ridge

    Google Scholar 

  • Ruiz-Rueda O, Hallin S, Baneras L (2009) Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiol Ecol 67:308–319

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation-A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    CAS  PubMed  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (2002) Aquatic macrophytes as biomonitors of pollution by textile industry. Bull Environ Contam Toxicol 69:82–96

    Article  CAS  PubMed  Google Scholar 

  • Samecka-Cymerman A, Stepien D, Kempers AJ (2004) Efficiency in removing pollutants by constructed wetland purification systems in Poland. J Toxicol Environ Health Pt A 67:265–275

    Article  CAS  Google Scholar 

  • Samecka-Cymerman A, Kolon K, Kempers AJ (2005) Differences in concentration of heavy metals between native and transplanted Plagiothecium denticulatum : a case study of soils contaminated by oil well exudates in south east Poland. Arch Environ Contam Toxicol 49:317–321

    Article  CAS  PubMed  Google Scholar 

  • Sampat P (2000) Groundwater shock: the polluting of the world’s major freshwater stores. World Watch 13(1):13–22

    Google Scholar 

  • Scholz M (2006) Wetland systems to control urban runoff. Elsevier, Amsterdam

    Google Scholar 

  • Scholz M (2010) Wetland systems-storm water management control. Springer, Berlin

    Google Scholar 

  • Scinto LJ, Reddy KR (2003) Biotic and abiotic uptake of phosphorus by periphyton in a subtropical freshwater wetland. Aquat Bot 77:203–222

    Article  CAS  Google Scholar 

  • Seidel K (1964) Abbau von bacterium coli durch höhere wasserpflanzen. Naturwissenschaften 51:395

    Article  Google Scholar 

  • Seidel K (1976) Macrophytes and water purification. In: Tourbier J, Pierson RWJ (eds) Biological control of water pollution. University of Pennsylvania Press, Pennsylvania, pp 109–123

    Chapter  Google Scholar 

  • Sekomo CB, Rousseau DPL, Saleh SA, Lens PNL (2012) Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecol Eng 44:102–110

    Article  Google Scholar 

  • Selvamurugan M, Doraisamy P, Maheswari M (2010) An integrated treatment system for coffee processing wastewater using anaerobic and aerobic process. Ecol Eng 36(12):1686–1690

    Article  Google Scholar 

  • Sengupta S, Gopal B, Das SN (2004) Effect of nutrient supply and water depth on nutrient uptake by two wetland plants. Bull Nat Inst Ecol 14:55–60

    Google Scholar 

  • Serra T, Fernando HJS, Rodriguez RV (2004) Effects of emergent vegetation on lateral diffusion in wetlands. Water Res 38:139–147

    Article  CAS  PubMed  Google Scholar 

  • Serrano L, De la Varga D, Ruiz I et al (2011) Winery wastewater treatment in a hybrid constructed wetland. Ecol Eng 37:744–753

    Article  Google Scholar 

  • Sharma KP, Sharma K, Kumar S, Sharma S, Grover R (2005) Response of selected aquatic macrophytes towards textile dye wastewaters. Indian J Biotechnol 4:538–545

    Google Scholar 

  • Shelef O, Gross A, Rachmilevitch S (2012) The use of bassia indica for salt phytoremediation in constructed wetlands. Water Res 46:3967–3976

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Kushwaha A, Hans N, Gautam A, Rani R (2019) Evaluation of the cytotoxicity and interaction of lead with lead resistant bacterium Acinetobacter junii Pb1. Braz J Microbiol. https://doi.org/10.1007/s42770-019-00041-1

  • Sklarz MY, Gross A, Yakirevich A, Soares MIM (2009) A recirculating vertical flow constructed wetland for the treatment of domestic wastewater. Desalination 246:617–624

    Article  CAS  Google Scholar 

  • Song X, Ding Y, Wang Y et al (2015) Comparative study of nitrogen removal and bio-film clogging for three filter media packing strategies in vertical flow constructed wetlands. Ecol Eng 74:1–7

    Article  Google Scholar 

  • Sood A, Uniyal PL, Prasanna RS, Ahluwalia A (2012) Phytoremediation potential of aquatic macrophyte, Azolla. R Swed Acad Sci 41:122–137

    CAS  Google Scholar 

  • Sorrell BK, Boon PI (1992) Biogeochemistry of billabong sediments. II. Seasonal-variations in methane production. Freshw Biol 27:435–445

    Article  CAS  Google Scholar 

  • Srivastava J, Gupta A, Chandra H (2008) Managing water quality with macrophytes. Rev Environ Sci Biotechnol 7:255–266

    Article  CAS  Google Scholar 

  • Srivastava J, Singh N, Chandra H, Singh D, Nautiyal AR (2009) Removal of soluble reactive phosphorus (SRP) from water by aquatic macrophytes. Rev Life Sci 2(3):167–172

    Google Scholar 

  • Stefanakis A, Akratos CS, Tsihrintzis VA (2014) Vertical flow constructed wetlands: eco-engineering systems for wastewater and sludge treatment. Newnes, Oxford

    Book  Google Scholar 

  • Stepniewska Z, Bennicelli RP, Balakhnina TI, Szajnocha K, Banach A, Wolinska A (2005) Potential of Azollacaroliniana for the removal of Pb and Cd from wastewaters. Int Agrophys 19(3):251

    CAS  Google Scholar 

  • Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Article  CAS  PubMed  Google Scholar 

  • Sudhira HS, Kumar VS (2000) Monitoring of lake water quality in Mysore city. In: Proceedings of Lake 2000, international symposium on restoration of lakes and wetlands. Indian Institute of Science, Bangalore, pp 1–10

    Google Scholar 

  • Tiwari S, Dixit S, Verma N (2007) An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Environ Monit Assess 129(1-3):253–256

    Article  CAS  PubMed  Google Scholar 

  • Tsihrintzis VA, Gikas GD (2010) Constructed wetlands for wastewater and activated sludge treatment in north Greece: a review. Water Sci Technol 61:2653–2672

    Article  CAS  PubMed  Google Scholar 

  • Varjo E, Liikanen A, Salonen P, Martikainen PJ (2003) A new gypsum-based technique to reduce methane and phosphorus release from sediment of eutrophied lakes: (gypsum treatment to reduce internal loading). Water Res 37:1–10

    Article  CAS  PubMed  Google Scholar 

  • Villa JA, Mitsch WJ, Song K, Miao S (2014) Contribution of different wetland plant species to the DOC exported from a mesocosm experiment in the Florida Everglades. Ecol Eng 71:118–125

    Article  Google Scholar 

  • Vipat V, Singh UR, Billore SK (2007) Efficacy of root zone treatment technology for treatment of domestic waste water field scale study of a pilot scale project Bhopal (MP), India. In: Proceedings of taal2007: the 12th world lake conference. pp 995–1003

    Google Scholar 

  • Vymazal J (2002) The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecol Eng 18:633–646

    Article  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65

    Article  CAS  PubMed  Google Scholar 

  • Vymazal J (2011) Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674:133–156

    Article  CAS  Google Scholar 

  • Vymazal J (2013) Emergent plants used in free water surface constructed wetlands: a review. Ecol Eng 61:582–592

    Article  Google Scholar 

  • Vymazal J (2014) Constructed wetlands for treatment of industrial wastewaters: a review. Ecol Eng 73:724–751

    Article  Google Scholar 

  • Vymazal J, Kröpfelová L (2011) A three-stage experimental constructed wetland for treatment of domestic sewage: first 2 years of operation. Ecol Eng 37:90–98

    Article  Google Scholar 

  • Vymazal J, Greenway M, Tonderski K et al (2006) Constructed wetlands for wastewater treatment, ecological Studies. Springer, Berlin

    Google Scholar 

  • Wallace S (2013) Intensified wetlands. International training course on research and application of constructed wetlands for wastewater treatment, Bei**g

    Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  CAS  PubMed  Google Scholar 

  • Wolff G et al (2009) Efeitos da toxicidade do zinco em folhas de Salvinia auriculata cultivadas em solução nutritiva. Planta Daninha 27(1):133–137

    Article  Google Scholar 

  • Wolff G et al (2012) The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: biomass and structure dependent on the cadmium concentration. Braz J Biol 72(1):71–77

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Kuschk P, Brix H et al (2014) Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Res 57:40–55

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Chang HT, Huang MNL (2001) Nutrient removal in gravel and soil-based wetland microcosms with and without vegetation. Ecol Eng 18:91–105

    Article  Google Scholar 

  • Yu L, Li HG, Liu FC (2017) Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities. Environ Monit Assess 189(1):34

    Article  CAS  Google Scholar 

  • Zhang DQ, **adasa KBSN, Gersberg RM et al (2014) Application of constructed wetlands for wastewater treatment in develo** countries-a review of recent developments (2000–2013). J Environ Manag 141:116–131

    Article  CAS  Google Scholar 

  • Zhi W, Yuan L, Ji G et al (2015) Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands. Environ Sci Technol 49:4575–4583

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Gibson CE, Zhu YM (2001) Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere 42:221–225

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bashir, I., Bhat, R.A., Mir, S.A. (2020). Applications of Macrophytes as Environmentally Sound Technique for Cleaning of Contaminated Ecosystems. In: Bhat, R., Hakeem, K., Saud Al-Saud, N. (eds) Bioremediation and Biotechnology, Vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-46075-4_12

Download citation

Publish with us

Policies and ethics

Navigation