Marine Polysaccharides in Pharmaceutical Uses

Chitin, Chitosan, Alginate, and Carrageenan

  • Reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Marine offers varied ingenious biomolecules, like polyethers, lipoglycoproteins, and polysaccharides executing native bio-functions including tissue-receptor, cell-growth/separation, antimicrobials, antifungal, and antiviral. Marine domain is emergent via biotechnology progresses and manageable in-vitro microorganism growth through assorted plants, animals, and micro-organisms (bacteria, algae, fungi, sponge, seaweed). Marine algae alone are richest source of many polysaccharides: chitin, chitosan, agar, alginate, and carrageenan’s. Marine polysaccharide are favored by multi-disciplinary fields including cell-science, biotechnology, biomedicals, pharmaceutics, medicines, and nano-engineering due to unique features like stability, economy, abundance, biocompatibility, biodegradability, and nontoxicity. Chitin, chitosan, agar, and carrageenan cater 50% marketed formulations such as nano-particles, scaffolds, membranes, and gels to combat various ailments, like cancers, microbial-infections, and injuries. This chapter spotlight current facts/findings with respect to production, physicochemical characteristics, bioactivity, discovery and novel utility of agar, alginate chitin/chitosan, and carrageenan in pharmaceutics. Especially focus on bio-appealing strategies like skeletal alteration, matrix-formation, and cross-linking of marine polysaccharides in pharmaceutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6:623–33.

    Article  CAS  Google Scholar 

  • Ausili E, Paolucci V, Triarico S, et al. Treatment of pressure sores in spina bifida patients with calcium alginate and foam dressings. Eur Rev Med Pharmacol Sci. 2013;17(12):1642–7.

    CAS  PubMed  Google Scholar 

  • Bale S, Baker N, Crook H, Rayman A, Rayman G, Harding KG. Exploring the use of an alginate dressing for diabetic foot ulcers. J Wound Care. 2001;10(3):81–4.

    Article  CAS  Google Scholar 

  • Bănică F-G. Chemical sensors and biosensors: fundamentals and applications. Chichester: Wiley; 2012. p. 576. isbn:978-1-118-35423-0.

    Book  Google Scholar 

  • Barikani M, Zia KM, Bhatti IA, Zuber M, Bhatti HN. Molecular engineering and properties of chitin based shape memory polyurethanes. Carbohydr Polym. 2008;4:621–6.

    Article  Google Scholar 

  • Böttcher S, Di Capua A, Blunt JW, Quinn RJ. Bioinspiration from marine scaffolds. In: La Barre S, Bates SS, editors. Blue biotechnology: production and use of marine molecules; 2018. p. 297. isbn:978-3-527-34138-2.

    Chapter  Google Scholar 

  • Campo VL, Carvalho I. Review carrageenans: biological properties, chemical modification & structural analysis: review. Carbohydr Polym. 2009;77:167–80.

    Article  CAS  Google Scholar 

  • Chang A. pH-sensitive starch-g-poly(acrylic acid)/sodium alginate hydrogels for controlled release of diclofenac sodium. Iran Polym J. 2015;24(2):161–9.

    Article  CAS  Google Scholar 

  • Chang PR, Jian R, Yu J, Ma X. Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym. 2010;80:420–5.

    Article  CAS  Google Scholar 

  • Chiu Y, Chan Y, Li T, et al. Inhibition of Japanese encephalitis virus infection by the sulfated polysaccharide extracts from Ulva lactuca. Mar Biotechnol. 2012;14:468–78. https://doi.org/10.1007/s10126-011-9428-x.

    Article  CAS  Google Scholar 

  • Coviello T, Matricardi P, Marianecci C, Alhaiqu F. Polysaccharide hydrogels for modified release formulations. J Control Release. 2007;119:5–24.

    Article  CAS  Google Scholar 

  • Dongre RS. Marine polysaccharides in medicine. In: Biological activities & application of marine polysaccharides, vol. 1. In-Tech Open; 2017. p. 181–206. https://doi.org/10.5772/65786. isbn:978-953-51-2860-1.

    Chapter  Google Scholar 

  • Dongre RS. Chitosan-derived synthetic ion exchangers: characteristics & applications. In-Tech Open. 2018a;1:21–42. https://doi.org/10.5772/intechopen.78964.

    Article  CAS  Google Scholar 

  • Dongre RS. Rationally fabricated nanomaterials for desalination and water purification. In: Book novel nanomaterials, vol. 1. In-Tech Open; 2018b. p. 348–66. https://doi.org/10.5772/intechopen.70149. isbn:978-1-78923-089-5.

    Chapter  Google Scholar 

  • Dongre RS. Chitosan formulations: chemistry, characteristics & contextual adsorption in unambiguous modernization of S&T. In: Hysteresis of composites; 2019. https://doi.org/10.5772/intechopen.83391. isbn:978-1-78984-810-6.

    Chapter  Google Scholar 

  • Drury JL, Dennis RG, Mooney DJ. The tensile properties of alginate hydrogels. Biomaterials. 2004;25:3187–99.

    Article  CAS  Google Scholar 

  • Dudarev VG, Iozep AA. Synthesis of carboxymethyl chitin benzylidenehydrazides. Russ J Appl Chem. 2010;83:1853–6.

    Article  CAS  Google Scholar 

  • Gåserod O, Smidsrod O, Skjåsk-Bræk G. Microcapsules of alginate-chitosan-I. A quantitative study of interaction between alginate & chitosan. Biomaterials. 1998;19:1815–25.

    Article  Google Scholar 

  • Gortari MC, Hours RA. Biotechnological processes for chitin recovery out of crustacean waste: a mini-review. Electron J Biotechnol. 2013;16:1–14.

    Google Scholar 

  • Gray CJ, Weissenborn MJ, Flitsch SL. Enzymatic reactions on immobilised substrates. Chem Soc Rev. 2013;42(15):6378–405. https://doi.org/10.1039/C3CS60018A.

    Article  CAS  PubMed  Google Scholar 

  • Honarkar H, Barikani M. Applications of biopolymers-I: chitosan. Monatsh Chem. 2009;140:1403–20.

    Article  CAS  Google Scholar 

  • Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H. Biomedical applications of chitin and chitosan based nanomaterials – a short review. Carbohydr Polym. 2010a;82:227–32.

    Article  CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci. 2010b;55:675–709.

    Article  CAS  Google Scholar 

  • Joshi S, Eshwar S, Jain V. Marine polysaccharides: biomedical & tissue engineering applications. In: Choi A, Ben-Nissan B, editors. Marine-derived biomaterials for tissue engineering applications, Springer series in biomaterials science & engineering, vol. 14. Singapore: Springer; 2019. https://doi.org/10.1007/978-981-13-8855-2_19.

    Chapter  Google Scholar 

  • Khan S, Tøndervik A, Sletta H, et al. Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrob Agents Chemother. 2012;56(10):5134–41.

    Article  CAS  Google Scholar 

  • Khotimchenko M, Khotimchenko Y. Antitumor potential of carrageenans from marine red algae. Crabohydr Polym. 2020;246:116568. https://doi.org/10.1016/j.carbpol.2020.116568.

    Article  CAS  Google Scholar 

  • Kurita K. Controlled functionalization of the polysaccharide chitin. Prog Polym Sci. 2001;26:1921–71.

    Article  CAS  Google Scholar 

  • Laurienzo P. Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs. 2010;8:2435–65.

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–26. https://doi.org/10.1016/j.progpolymsci.2011.06.003. PMCID: PMC3223967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao X, Zhang J, Kan F, Gao Y, Lan J, Zhang X, Hu Z, Li Y, Lin H. Antioxidant production and chitin recovery from shrimp head fermentation with Streptococcus thermophilus. Food Sci Biotechnol. 2013;22:1023–32.

    Article  CAS  Google Scholar 

  • Niekraszewicz B, Niekraszewicz A. The structure of alginate, chitin and chitosan fibres. In: Handbook of textile fibre structure. Cambridge, UK: Woodhead Publishing Limited; 2009. p. 266–304.

    Chapter  Google Scholar 

  • Pillai CKS, Paul W, Chandra P, Sharma CP. Chitin & chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34:641–78.

    Article  CAS  Google Scholar 

  • Ravi Kumar MMV. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27. https://doi.org/10.1016/S1381-5148(00)00038-9.

    Article  Google Scholar 

  • Sakai S, Hirose K, Moriyama K. Control of cellular adhesiveness in an alginate-based hydrogel by varying peroxidase and H2O2 concentrations during gelation. Acta Biomater. 2010;6:1446–52.

    Article  CAS  Google Scholar 

  • Sá-Lima H. Stimuli-responsive chitosan-starch injectable hydrogel combine encapsulated adipose-derive stromal cell for articular cartilage regeneration. Soft Matter. 2010;6(20):5184–95.

    Article  Google Scholar 

  • Sashiwa H, Aiba S-I. Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci. 2004;29:887–908.

    Article  CAS  Google Scholar 

  • Szekalska M, Puciłowska A, Szymańska E, Ciosek P, Winnicka K. Alginate: current use & future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci. 2016, Article ID 7697031. https://doi.org/10.1155/2016/7697031.

  • Tong Y, Guan H, Wang S, Xu J, He C. Syntheses of chitin-based imprinting polymers and their binding properties for cholesterol. Carbohydr Res. 2011;346:495–500.

    Article  CAS  Google Scholar 

  • Tsioptsias C, Tsivintzelis I, Papadopoulou L, Panayiotou C. A novel method for producing tissue engineering scaffolds from chitin, chitin-hydroxyapatite, and cellulose. Mater Sci Eng C. 2009;29:159–64.

    Article  CAS  Google Scholar 

  • Wahl EA, Fierro FA, Peavy TR, et al. In vitro evaluation of scaffolds for the delivery of mesenchymal stem cells to wounds. BioMed Res Int. 2015, Article ID 108571, 14 pages.

    Google Scholar 

  • Wang X, Hao T, Qu J, Wang C, Chen H. Synthesis of thermal polymerizable alginate-GMA hydrogel for cell encapsulation. J Nanomater. 2015, Article ID 970619, 8 pages.

    Google Scholar 

  • Yaghobi N, Mirzadeh H. Enhancement of chitin’s degree of deacetylation by multistage alkali treatments. Iran Polym J. 2004;13:131–6.

    CAS  Google Scholar 

  • Zohuriaan-Mehr MJ. Advances in chitin and chitosan modification through graft copolymerization: a comprehensive review. Iran Polym J. 2005;14:235–65.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dongre, R.S. (2022). Marine Polysaccharides in Pharmaceutical Uses. In: Oliveira, J.M., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-42215-8_43

Download citation

Publish with us

Policies and ethics

Navigation