Log in

Antioxidant production and chitin recovery from shrimp head fermentation with Streptococcus thermophilus

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Fermentation of shrimp head was conducted using Streptococcus thermophilus to produce antioxidant and recover chitin. Fermentation conditions were found to be 10% shrimp head concentration, 5% glucose concentration, 1.2%(v/v) inoculum size, and 64 h of incubation time at 42°C to attain an initial pH of 5.00 with response surface method optimization and the actual deproteinization rate obtained was 93.59%. Antioxidant activity in the supernatant fluid increased greatly during fermentation, the DPPH radical scavenging ability of the culture supernatant was about 98.70%. The concent-ration of astaxanthin, phenolic compounds, and free amino acid in the culture supernatant was 1.774 μg/mL, 589.69 μg gallic acid equivalents/mL, and 796.978mg/mL, respectively. Comparison of the FT-IR spectra and X-ray diffraction (XRD) analysis among commercial chitin (CTa), chitin prepared by the S. thermophilus fermentation (CTb), and chitin prepared by chemical treatments (CTc) demonstrated that CTb had the highest degree of deacetylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sachindra NM, Bhaskar N, Mahendrakar NS. Carotenoids in different body components of Indian shrimps. J. Sci. Food Agr. 85: 167–172 (2005)

    Article  CAS  Google Scholar 

  2. Bueno-Solano C, López-Cervantes J, Campas-Baypoli O, Lauterio-García R, Adan-Bante N, Sánchez-Machado D. Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products. Food Chem. 112: 671–675 (2000)

    Article  Google Scholar 

  3. Shahidi F, Metusalach, Brown JA. Carotenoid pigments in seafoods and aquaculture. Crit. Rev. Food Sci. 38: 1–67 (1998)

    Article  CAS  Google Scholar 

  4. Ghorbel-Bellaaj O, Hmidet N, Jellouli K, Younes I, Maalej H, Hachicha R, Nasri M. Shrimp waste fermentation with Pseudomonas aeruginosa A2: Optimization of chitin extraction conditions through Plackett-Burman and response surface methodology approaches. Int. J. Biol. Macromol. 48: 596–602 (2011)

    Article  CAS  Google Scholar 

  5. Hirano S. Chitin and chitosan as novel biotechnological materials. Polym. Int. 48: 732–734 (1999)

    Article  CAS  Google Scholar 

  6. Gimeno M, Ramirez-Hernandez JY, Martinez-Ibarra C, Pacheco N, Garcia-Arrazola R, Barzana E, Shirai K. One-solvent extraction of astaxanthin from lactic acid fermented shrimp wastes. J. Agr. Food Chem. 55: 10345–10350 (2007)

    Article  CAS  Google Scholar 

  7. Percot A, Viton C, Domard A. Characterization of shrimp shell deproteinization. Biomacromolecules 4: 1380–1385 (2003)

    Article  CAS  Google Scholar 

  8. Oh KT, Kim YJ, Nguyen VN, Jung WJ, Park RD. Demineralization of crab shell waste by (Pseudomonas aeruginosa) F722. Process Biochem. 42: 1069–1074 (2007)

    Article  CAS  Google Scholar 

  9. Box GEP, Hunter JS, Hunter WG. Statistics for Experimenters. John Wiley, New York, NY, USA. pp. 291–334 (1978)

    Google Scholar 

  10. Kembhavi AA, Kulkarni A, Pant A. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM no. 64. Appl. Biochem. Biotech. 38: 83–92 (1993)

    Article  CAS  Google Scholar 

  11. Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agr. Food Chem. 40: 945–948 (1992)

    Article  CAS  Google Scholar 

  12. Rao MS, Stevens WF. Fermentation of shrimp biowaste under different salt concentrations with amylolytic and non-amylolytic Lactobacillus strains for chitin production. Food Technol. Biotech. 44: 83–87 (2006)

    CAS  Google Scholar 

  13. van Slyke DD, Kirk E. Comparison of gasometric, colorimetric, and titrimetric determinations of amino nitrogen in blood and urine. Appl. Biochem. Biotech. 102: 651–682 (1933)

    Google Scholar 

  14. Julkunen-Tiitto R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agr. Food Chem. 33: 213–217 (1985)

    Article  CAS  Google Scholar 

  15. Kuhnen S, Lemos PMM, Campestrini LH, Ogliari JB, Dias PF, Maraschin M. Antiangiogenic properties of carotenoids: A potential role of maize as functional food. J. Funct. Foods 1: 284–290 (2009)

    Article  CAS  Google Scholar 

  16. Valdez-Peña AU, Espinoza-Perez JD, Sandoval-Fabian GC, Balagurusamy N, Hernandez-Rivera A, De-la-Garza-Rodriguez IM, Contreras-Esquivel JC. Screening of industrial enzymes for deproteinization of shrimp head for chitin recovery. Food Sci. Biotechnol.19: 553–557 (2010)

    Article  Google Scholar 

  17. Zhang Y, Xue C, Xue Y, Gao R, Zhang X. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohyd. Res. 340: 1914–1917 (2005)

    Article  CAS  Google Scholar 

  18. Duan S, Zhang YX, Lu TT, Cao DX, Chen JD. Shrimp waste fermentation using symbiotic lactic acid bacteria. Adv. Mater. Res. 194: 2156–2163 (2011)

    Article  Google Scholar 

  19. Cira LA, Huerta S, Hall GM, Shirai K. Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process. Biochem. 37: 1359–1366 (2002)

    Article  CAS  Google Scholar 

  20. Pacheco N, Garnica-González M, Ramírez-Hernández JY, Flores-Albino B, Gimeno M, Bárzana E, Shirai K. Effect of temperature on chitin and astaxanthin recoveries from shrimp waste using lactic acid bacteria. Bioresource Technol. 100: 2849–2854 (2009)

    Article  CAS  Google Scholar 

  21. Oh ES, Kim DS, Kim JH, Kim HR. Enzymatic properties of a propease from the hepatopancreas of shrimp, Penaeus omentaim. J. Food Biochem. 24: 251–264 (2000)

    Article  CAS  Google Scholar 

  22. Vidotti RM, Viegas EMM, Carneiro DJ. Amino acid composition of processed fish silage using different raw materials. Anim. Feed Sci. Tech. 105: 199–204 (2003)

    Article  CAS  Google Scholar 

  23. Mathew P, Nair K. Ensilation of shrimp waste by Lactobacillus fermentum. Fishery Technol. 43: 59 (2006)

    Google Scholar 

  24. Lindgren S, Pleje M. Silage fermentation of fish or fish waste products with lactic acid bacteria. J. Sci. Food Agr. 34: 1057–1067 (1983)

    Article  Google Scholar 

  25. Healy M, Green A, Healy A. Bioprocessing of marine crustacean shell waste. Acta Biotechnol. 23: 151–160 (2003)

    Article  CAS  Google Scholar 

  26. Gildberg A, Stenberg E. A new process for advanced utilisation of shrimp waste. Process Biochem. 36: 809–812 (2001)

    Article  CAS  Google Scholar 

  27. Kim SK, Mendis E. Bioactive compounds from marine processing byproducts-A review. Food Res. Int. 39: 383–393 (2006)

    Article  CAS  Google Scholar 

  28. Binsan W, Benjakul S, Visessanguan W, Roytrakul S, Tanaka M, Kishimura H. Antioxidative activity of mungoong, an extract paste, from the cephalothorax of white shrimp (Litopenaeus vannamei). Food Chem. 106: 185–193 (2008)

    Article  CAS  Google Scholar 

  29. Ramachandran E, Natarajan S. XRD, thermal and FTIR studies on gel grown DL-phenylalanine crystals. Cryst. Res. Technol. 42: 617–620 (2007)

    Article  CAS  Google Scholar 

  30. Friedman M, Finley JW. Methods of tryptophan analysis. J. Agr. Food Chem. 19: 626–631 (1971)

    Article  CAS  Google Scholar 

  31. Spergel DJ, Krüth U, Hanley DF, Sprengel R, Seeburg PH. GABAand glutamate-activated channels in green fluorescent proteintagged gonadotropin-releasing hormone neurons in transgenic mice. J. Neurosci. 19: 2037–2050 (1999)

    CAS  Google Scholar 

  32. Gocho H, Shimizu H, Tanioka A, Chou TJ, Nakajima T. Effect of polymer chain end on sorption isotherm of water by chitosan. Carbohyd. Polym. 41: 87–90 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, X., Zhang, J., Kan, F. et al. Antioxidant production and chitin recovery from shrimp head fermentation with Streptococcus thermophilus . Food Sci Biotechnol 22, 1023–1032 (2013). https://doi.org/10.1007/s10068-013-0179-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0179-5

Keywords

Navigation