Studies of C–H Activation and Functionalization: Combined Computational and Experimental Efforts to Elucidate Mechanisms, Principles, and Catalysts

  • Chapter
  • First Online:
Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile

Abstract

For many years, the development of new methods and catalytic processes for the functionalization of C–H bonds has been among the primary challenges in the field of synthetic chemistry. The selective functionalization of light alkanes offers the possibility of expanded and more efficient use of natural gas, as the functionalization of larger hydrocarbons (e.g., long chain alkanes or arenes) could afford less expensive processes that are more environmentally benign as well as access to entirely new compounds, and the selective C–H functionalization of more complex organic compounds offers strategies for improved routes to prepare high-value fine chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. BP Statistical Review of World Energy June 2016 (British Petroleum, London, 2016)

    Google Scholar 

  2. Liquefied Natural Gas: Understanding the Basic Facts (U.S. Department of Energy, Washington D.C., 2005)

    Google Scholar 

  3. B.G. Hashiguchi, S.M. Bischof, M.M. Konnick, R.A. Periana, Designing catalysts for functionalization of unactivated C–H bonds based on the CH activation reaction. Acc. Chem. Res. 45, 885–898 (2012)

    Article  CAS  Google Scholar 

  4. C.D. Elvidge, M. Zhizhin, K. Baugh, F.C. Hsu, T. Ghosh, Methods for global survey of natural gas flaring from visible infrared imaging radiometer suite data. Energies 9, 1–15 (2016)

    Google Scholar 

  5. Z. Zhu, J.H. Espenson, Organic reactions catalyzed by methylrhenium trioxide: reactions of ethyl diazoacetate and organic azides. J. Am. Chem. Soc. 118, 9901–9907 (1996)

    Article  CAS  Google Scholar 

  6. S.J. Blanksby, G.B. Ellison, Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003)

    Article  CAS  Google Scholar 

  7. CRC Handbook of Chemistry and Physics, 65th edn (CRC Press, Boca Raton, FL, 1984)

    Google Scholar 

  8. A. Malik, V. Mantri, Gas-to-liquids plants face challenges in the U.S. market, in Today in Energy (U.S. Energy Information Administration: Online, 2014)

    Google Scholar 

  9. J.R. Webb, T. Bolaño, T.B. Gunnoe, Catalytic oxy-functionalization of methane and other hydrocarbons: fundamental advancements and new strategies. ChemSusChem 4, 37–49 (2011)

    Article  CAS  Google Scholar 

  10. A.E. Shilov, G.B. Shul’pin, Activation of C–H bonds by metal complexes. Chem. Rev. 97, 2879–2932 (1997)

    Article  CAS  Google Scholar 

  11. V.N. Cavaliere, D.J. Mindiola, Methane: a new frontier in organometallic chemistry. Chem. Sci. 3, 3356–3365 (2012)

    Article  CAS  Google Scholar 

  12. R.A. Periana, G. Bhalla, W.J. Tenn III, K.J.H. Young, X.Y. Liu, O. Mironov, C.J. Jones, V.R. Ziatdinov, Perspectives on some challenges and approaches for develo** the next generation of selective, low temperature, oxidation catalysts for alkane hydroxylation based on the CH activation reaction. J. Mol. Catal. A: Chem. 220, 7–25 (2004)

    Article  CAS  Google Scholar 

  13. D. Klein, Radical Reactions, Organic Chemistry, 2nd edn. (Wiley, Hoboken, NJ, 2015), pp. 500–539

    Google Scholar 

  14. G. Egloff, R.E. Schaad, C.D. Lowry, The halogenation of the paraffin hydrocarbons. Chem. Rev. 8, 1–80 (1931)

    Article  CAS  Google Scholar 

  15. R.H. Crabtree, Aspects of methane chemistry. Chem. Rev. 95, 987–1007 (1995)

    Article  CAS  Google Scholar 

  16. A.J. Magistro, J.A. Cowfer, Oxychlorination of ethylene. J. Chem. Ed. 63, 1056 (1986)

    Article  CAS  Google Scholar 

  17. S.G. Podkolzin, E.E. Stangland, M.E. Jones, E. Peringer, J.A. Lercher, Methyl chloride production from methane over lanthanum-based catalysts. J. Am. Chem. Soc. 129, 2569–2576 (2007)

    Article  CAS  Google Scholar 

  18. R.A. Periana, O. Mirinov, D.J. Taube, S. Gamble, High yield conversion of methane to methyl bisulfate catalyzed by iodine cations. Chem. Commun. 2376–2377 (2002)

    Google Scholar 

  19. X. Gang, Y. Zhu, H. Birch, H.A. Hjuler, N.J. Bjerrum, Iodine as catalyst for the direct oxidation of methane to methyl sulfates in oleum. Appl. Catal. A 261, 91–98 (2004)

    Google Scholar 

  20. B. Michalkiewicz, M. Jarosińska, I. Łukasiewicz, Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161 (2009)

    Article  CAS  Google Scholar 

  21. J. Buddrus, H. Plettenberg, Selective oxidation of alkanes and ethers with iodine tris(trifluoroacetate). Angew. Chem. Int. Ed. 15, 436 (1976)

    Article  Google Scholar 

  22. M.M. Konnick, B.G. Hashiguchi, D. Devarajan, N.C. Boaz, T.B. Gunnoe, J.T. Groves, N. Gunsalus, D.H. Ess, R.A. Periana, Selective CH functionalization of methane, ethane, and propane by a perfluoroarene iodine(III) complex. Angew. Chem. Int. Ed. 53, 10490–10494 (2014)

    Article  CAS  Google Scholar 

  23. G.C. Fortman, N.C. Boaz, D. Munz, M.M. Konnick, R.A. Periana, J.T. Groves, T.B. Gunnoe, Selective monooxidation of light alkanes using chloride and iodate. J. Am. Chem. Soc. 136, 8393–8401 (2014)

    Article  CAS  Google Scholar 

  24. S.E. Kalman, D. Munz, G.C. Fortman, N.C. Boaz, J.T. Groves, T.B. Gunnoe, Partial oxidation of light alkanes by periodate and chloride salts. Dalton Trans. 44, 5294–5298 (2015)

    Article  CAS  Google Scholar 

  25. R.A. Periana, D.J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998)

    Article  CAS  Google Scholar 

  26. G. Zichittella, V. Paunovic, A.P. Amrute, J. Perez-Ramirez, Catalytic oxychlorination versus oxybromination for methane functionalization. ACS Catal. 7, 1805–1817 (2017)

    Article  CAS  Google Scholar 

  27. B. Maillard, K.U. Ingold, J.C. Scaiano, Rate constants for the reactions of free radicals with oxygen in solution. J. Am. Chem. Soc. 105, 5095–5099 (1983)

    Article  CAS  Google Scholar 

  28. S.C.W. Hook, B. Saville, The Trap** of carbon radicals. the competition of oxygen and iodine for the 1,1-diphenylethyl radical. J. Chem. Soc. Perkin Trans. 2, 589–593 (1975)

    Article  Google Scholar 

  29. S.P. Mezyk, K.P. Madden, Arrhenius parameter determination for the reaction of methyl radicals with iodine species in aqueous solution. J. Phys. Chem. 100, 9360–9364 (1996)

    Article  CAS  Google Scholar 

  30. N.C. Boaz, Mechanistic studies of the iodate mediated monooxidation of light alkanes (2016)

    Google Scholar 

  31. R. Fu, R.J. Nielsen, N.A. Schwartz, W.A. Goddard III, T.B. Gunnoe, J.T. Groves, DFT mechanistic study of methane monooxygenation by hypervalent iodine alkane oxidation (HIAO) process. Manuscript submitted. J. Chem. Phys. C. 123, 15674 (2019)

    Google Scholar 

  32. G.W. Smith, H.D. Williams, Some reactions of adamantane and adamantane derivatives. J. Org. Chem. 26, 2207–2212 (1961)

    Article  CAS  Google Scholar 

  33. S.H. Combe, A. Hosseini, A. Parra, P.R. Schreiner, Mild aliphatic and benzylic hydrocarbon C–H bond chlorination using trichloroisocyanuric acid. J. Org. Chem. 82, 2407–2413 (2017)

    Article  CAS  Google Scholar 

  34. S. Bloom, C.R. Pitts, D.C. Miller, N. Haselton, M.G. Holl, E. Urheim, T. Lectka, A polycomponent metal-catalyzed aliphatic, allylic, and benzylic fluorination. Angew. Chem. Int. Ed. 51, 10580–10583 (2012)

    Article  CAS  Google Scholar 

  35. W. Liu, X. Huang, M.-J. Cheng, R.J. Nielsen, W.A. Goddard III, J.T. Groves, Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin. Science 337, 1322–1325 (2012)

    Article  CAS  Google Scholar 

  36. N.C. Boaz, N.A. Schwartz, S.E. Kalman, T.B. Gunnoe, J.T. Groves, Manuscript in preparation. ACS Catal. 8, 3138 (2018)

    Google Scholar 

  37. M. Ahlquist, R.J. Nielsen, R.A. Periana, W.A. Goddard III, Product protection, the key to develo** high performance methane selective oxidation catalysts. J. Am. Chem. Soc. 131, 17110–17715 (2009)

    Article  CAS  Google Scholar 

  38. N.F. Goldshleger, A.A. Shteinma, A.E. Shilov, A.E. Shilov, V.V. Eskova, Reactions of alkanes in solutions of chloride complexes of platinum. Russ. J. Phys. Chem. 46, 785–786 (1972)

    Google Scholar 

  39. N.F. Goldshleger, M.B. Tyabin, A.E. Shilov, A.A. Shteinman, Activation of saturated hydrocarbons-deuterium-hydrogen exchange in solutions of transition metal complexes. Russ. J. Phys. Chem. 43, 1222–1223 (1969)

    Google Scholar 

  40. P.J. Pérez, Alkane CH Activation by Single-Site Metal Catalysis (Springer Science & Business Media, vol. 38, 2012)

    Google Scholar 

  41. S.S. Stahl, J.A. Labinger, J.E. Bercaw, Homogeneous oxidation of alkanes by electrophilic late transition metals. Angew. Chem. Int. Ed. 37, 2180–2192 (1998)

    Article  Google Scholar 

  42. R.A. Periana, D.J. Taube, E.R. Evitt, D.G. Löffler, P.R. Wentrcek, G. Voss, T. Masuda, A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259, 340–343 (1993)

    Article  CAS  Google Scholar 

  43. R.A. Periana, O. Mironov, D. Taube, G. Bhalla, C.J. Jones, Catalytic, oxidative condensation of CH4 to CH3COOH in One Step via CH activation. Science 301, 814–818 (2003)

    Article  CAS  Google Scholar 

  44. C.J. Jones, D. Taube, V.R. Ziatdinov, R.A. Periana, R.J. Nielsen, J. Oxgaard, W.A. Goddard III, Selective oxidation of methane to methanol catalyzed, with CH activation, by homogeneous, cationic gold. Angew. Chem. 116, 4726–4729 (2004)

    Article  Google Scholar 

  45. O.A. Mironov, S.M. Bischof, M.M. Konnick, B.G. Hashiguchi, V.R. Ziatdinov, W.A. Goddard, M. Ahlquist, R.A. Periana, Using reduced catalysts for oxidation reactions: mechanistic studies of the “Periana-Catalytica” system for CH4 oxidation. J. Am. Chem. Soc. 135, 14644–14658 (2013)

    Article  CAS  Google Scholar 

  46. B. Michalkiewicz, J. Ziebro, M. Tomaszewska, Preliminary investigation of low pressure membrane distillation of methyl bisulphate from its solutions in fuming sulphuric acid combined with hydrolysis to methanol. J. Membr. Sci. 286, 223–227 (2006)

    Article  CAS  Google Scholar 

  47. R.H. Crabtree, Alkane C–H activation and functionalization with homogeneous transition metal catalysts: a century of progress-a new millennium in prospect. J. Chem. Soc. Dalton Trans. 2437–2450 (2001)

    Google Scholar 

  48. M.-J. Cheng, S.M. Bischof, R.J. Nielsen, W.A. Goddard III, T.B. Gunnoe, R.A. Periana, The para-substituent effect and pH-dependence of the organometallic Baeyer-Villiger oxidation of rhenium-carbon bonds. Dalton Trans. 41, 3758–3763 (2012)

    Article  CAS  Google Scholar 

  49. D. Devarajan, T.B. Gunnoe, D.H. Ess, Theory of late-transition-metal alkyl and heteroatom bonding: analysis of Pt, Ru, Ir, and Rh complexes. Inorg. Chem. 51, 6710–6718 (2012)

    Article  CAS  Google Scholar 

  50. T.M. Figg, J.R. Webb, T.R. Cundari, T.B. Gunnoe, Carbon-oxygen bond formation via organometallic baeyer-villiger transformations: a computational study on the impact of metal identity. J. Am. Chem. Soc. 134, 2332–2339 (2012)

    Article  CAS  Google Scholar 

  51. B.G. Hashiguchi, K.J.H. Young, M. Yousufuddin, W.A. Goddard III, R.A. Periana, Acceleration of nucleophilic CH activation by strongly basic solvents. J. Am. Chem. Soc. 132, 12542–12545 (2010)

    Article  CAS  Google Scholar 

  52. J. Kovach, W.W. Brennessel, W.D. Jones, Electrophilic C–H activation of benzene with a shilov-inspired rhodium(III) diimine complex. J. Organomet. Chem. 793, 192–199 (2015)

    Article  CAS  Google Scholar 

  53. J.L. Rhinehart, K.A. Manbeck, S.K. Buzak, G.M. Lippa, W.W. Brennessel, K.I. Goldberg, W.D. Jones, Catalytic arene H/D exchange with novel rhodium and iridium complexes. Organometallics 31, 1943–1952 (2012)

    Article  CAS  Google Scholar 

  54. S.K. Hanson, D.M. Heinekey, K.I. Goldberg, C–H bond activation by rhodium(I) phenoxide and acetate complexes: mechanism of H–D exchange between arenes and water. Organometallics 27, 1454–1463 (2008)

    Article  CAS  Google Scholar 

  55. J.B. Gary, T.J. Carter, M.S. Sanford, Rh(III) pyridinium substituted bipyridine complexes as catalysts for arene H/D exchange. Top. Catal. 55, 565–570 (2012)

    Article  CAS  Google Scholar 

  56. B.A. Vaughan, M.S. Webster-Gardiner, T.R. Cundari, T.B. Gunnoe, A rhodium catalyst for single-step styrene production from benzene and ethylene. Science 348, 421–424 (2015)

    Article  CAS  Google Scholar 

  57. X.Y. Liu, K.S. Lokare, S.K. Ganesh, J.M. Gonzales, J. Oxgaard, W.A. Goddard Iii, R.A. Periana, Rhodium complexes bearing tetradentate diamine-Bis (phenolate) ligands. Dalton Trans. 40, 301–304 (2011)

    Article  CAS  Google Scholar 

  58. M.S. Webster-Gardiner, R. Fu, G.C. Fortman, R.J. Nielsen, T.B. Gunnoe, W.A. Goddard III, Arene C–H activation using Rh(I) catalysts supported by bidentate nitrogen chelates. Catal. Sci. Technol. 5, 96–100 (2015)

    Article  CAS  Google Scholar 

  59. H. Chen, S. Schlecht, T.C. Semple, J.F. Hartwig, Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000)

    Article  CAS  Google Scholar 

  60. S.R. Klei, K.L. Tan, J.T. Golden, C.M. Yung, R.K. Thalji, K.A. Ahrendt, J.A. Ellman, T.D. Tilley, R.G. Bergman, in Carbon-Hydrogen Bond Activation by Iridium and Rhodium Complexes: Catalytic Hydrogen/Deuterium Exchange and Carbon-Carbon Bond-Forming Reactions (ACS Symposium Series, 2004)

    Google Scholar 

  61. W.D. Jones, On the nature of carbon–hydrogen bond activation at rhodium and related reactions. Inorg. Chem. 44, 4475–4484 (2005)

    Article  Google Scholar 

  62. B.A. Arndtsen, R.G. Bergman, T.A. Mobley, T.H. Peterson, Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc. Chem. Res. 28, 154–162 (1995)

    Article  CAS  Google Scholar 

  63. B.A. Vaughan, S.K. Khani, J.B. Gary, J.D. Kammert, M.S. Webster-Gardiner, B.A. McKeown, R.J. Davis, T.R. Cundari, T.B. Gunnoe, Mechanistic studies of single-step styrene production using a rhodium(I) catalyst. J. Am. Chem. Soc. 139, 1485–1498 (2017)

    Article  CAS  Google Scholar 

  64. M.S. Webster-Gardiner, J. Chen, B.A. Vaughan, B.A. McKeown, W. Schinski, T.B. Gunnoe, Catalytic synthesis of “Super” linear alkenyl arenes using an easily prepared Rh(I) catalyst. J. Am. Chem. Soc. 139, 5474–5480 (2017)

    Article  CAS  Google Scholar 

  65. D.H. Ess, T.B. Gunnoe, T.R. Cundari, W.A. Goddard, R.A. Periana, Ligand lone-pair influence on hydrocarbon C–H activation: a computational perspective. Organometallics 29, 6801–6815 (2010)

    Article  CAS  Google Scholar 

  66. S.R. Golisz, T.B. Gunnoe, W.A. Goddard III, J.T. Groves, R.A. Periana, Chemistry in the center for catalytic hydrocarbon functionalization: an energy Frontier Research Center. Catal. Lett. 141, 213–221 (2011)

    Article  CAS  Google Scholar 

  67. S.M. Bischof, M.-J. Cheng, R.J. Nielsen, T.B. Gunnoe, W.A. Goddard III, R.A. Periana, Functionalization of rhenium aryl bonds by O-atom transfer. Organometallics 30, 2079–2082 (2011)

    Article  CAS  Google Scholar 

  68. M.E. O’Reilly, R. Fu, R.J. Nielsen, M. Sabat, W.A. Goddard III, T.B. Gunnoe, Long-range C–H bond activation by RhIII-carboxylates. J. Am. Chem. Soc. 136, 14690–14693 (2014)

    Article  Google Scholar 

  69. R. Fu, R.J. Nielsen, W.A. Goddard, G.C. Fortman, T.B. Gunnoe, DFT virtual screening identifies rhodium-amidinate complexes as potential homogeneous catalysts for methane-to-methanol oxidation. ACS Catal. 4, 4455–4465 (2014)

    Article  CAS  Google Scholar 

  70. R. Fu, M.E. O’Reilly, R.J. Nielsen, W.A. Goddard III, T.B. Gunnoe, Rhodium Bis (quinolinyl)benzene complexes for methane activation and functionalization. Chem. Eur. J. 21, 1286–1293 (2015)

    Google Scholar 

  71. D. Munz, M.S. Webster-Gardiner, R. Fu, T. Strassner, W.A. Goddard, T.B. Gunnoe, Proton or metal? The H/D exchange of arenes in acidic solvents. ACS Catal. 5, 769–775 (2015)

    Article  CAS  Google Scholar 

  72. M.E. O’Reilly, S.I. Johnson, R.J. Nielsen, W.A. Goddard III, T.B. Gunnoe, Transition-metal-mediated nucleophilic aromatic substitution with acids. Organometallics 35, 2053–2056 (2016)

    Article  Google Scholar 

  73. M.S. Webster-Gardiner, P.E. Piszel, R. Fu, B.A. McKeown, R.J. Nielsen, W.A. Goddard III, T.B. Gunnoe, Electrophilic RhI catalysts for arene H/D exchange in acidic media: evidence for an electrophilic aromatic substitution mechanism. J. Mol. Catal. A: Chem. 426, 381–388 (2017)

    Article  CAS  Google Scholar 

  74. A.J. Hickman, J.M. Villalobos, M.S. Sanford, Quantitative assay for the direct comparison of platinum catalysts in benzene H/D exchange. Organometallics 28, 5316–5322 (2009)

    Article  CAS  Google Scholar 

  75. M.H. Emmert, J.B. Gary, J.M. Villalobos, M.S. Sanford, Platinum and palladium complexes containing cationic ligands as catalysts for arene H/D exchange and oxidation. Angew. Chem. Int. Ed. 49, 5884–5886 (2010)

    Article  CAS  Google Scholar 

  76. M.C. Lehman, J.B. Gary, P.D. Boyle, M.S. Sanford, E.A. Ison, Effect of solvent and ancillary ligands on the catalytic H/D exchange reactivity of Cp*IrIII(L) complexes. ACS Catal. 3, 2304–2310 (2013)

    Article  CAS  Google Scholar 

  77. N.A. Isley, R.T.H. Linstadt, S.M. Kelly, F. Gallou, B.H. Lipshutz, Nucleophilic aromatic substitution reactions in water enabled by micellar catalysis. Org. Lett. 17, 4734–4737 (2015)

    Article  CAS  Google Scholar 

  78. J.F. Bunnett, R.E. Zahler, Aromatic nucleophilic substitution reactions. Chem. Rev. 49, 273–412 (1951)

    Article  CAS  Google Scholar 

  79. J.R. Rodriguez, J. Agejas, A.B. Bueno, Practical synthesis of aromatic ethers by SNAr of fluorobenzenes with alkoxides. Tetrahedron Lett. 47, 5661–5663 (2006)

    Article  CAS  Google Scholar 

  80. G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, E. Marcantoni, P. Melchiorre, L. Sambri, tert-butyl ethers: renaissance of an alcohol protecting group. Facile cleavage with cerium(III) chloride/sodium iodide. Adv. Synth. Catal. 348, 905–910 (2006)

    Article  CAS  Google Scholar 

  81. A. Procopio, P. Costanzo, M. Curini, M. Nardi, M. Oliverio, R. Paonessa, An eco-sustainable erbium (III) triflate catalyzed formation and cleavage of tert-butyl ethers. Synthesis 2011, 73–78

    Article  Google Scholar 

  82. M.E. O’Reilly, D.R. Pahls, J.R. Webb, N.C. Boaz, S. Majumdar, C.D. Hoff, J.T. Groves, T.R. Cundari, T.B. Gunnoe, Reductive functionalization of a rhodium(III)-methyl bond by electronic modification of the supporting ligand. Dalton Trans. 43, 8273–8281 (2014)

    Article  Google Scholar 

  83. M.E. O’Reilly, D.R. Pahls, T.R. Cundari, T.B. Gunnoe, Reductive functionalization of a rhodium(III)–methyl bond in acidic media: key step in the electrophilic functionalization of methane. Organometallics 33, 6504–6510 (2014)

    Article  Google Scholar 

  84. J.F. Hartwig, Evolution of C–H bond functionalization from methane to methodology. J. Am. Chem. Soc. 138, 2–24 (2016)

    Article  CAS  Google Scholar 

  85. J.A. Labinger, J.E. Bercaw, Understanding and exploiting C-H bond activation. Nature 417, 507–514 (2002)

    Article  CAS  Google Scholar 

  86. D.A. Colby, R.G. Bergman, J.A. Ellman, Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010)

    Article  CAS  Google Scholar 

  87. T.W. Lyons, M.S. Sanford, Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010)

    Article  CAS  Google Scholar 

  88. A. Studer, D.P. Curran, Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016)

    Article  CAS  Google Scholar 

  89. X. Huang, J.T. Groves, Taming azide radicals for catalytic C–H azidation. ACS Catal. 6, 751–759 (2016)

    Article  CAS  Google Scholar 

  90. M. Rossberg, W. Lendle, G. Pfleiderer, A. Tögel, E.-L. Dreher, E. Langer, H. Rassaerts, P. Kleinschmidt, H. Strack, R. Cook, U. Beck, K.-A. Lipper, T.R. Torkelson, E. Löser, K.K. Beutel, T. Mann, Chlorinated Hydrocarbons, in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Weinheim, 2006)

    Google Scholar 

  91. C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013)

    Article  CAS  Google Scholar 

  92. J. **e, H. **, P. Xu, C. Zhu, When C-H bond functionalization meets visible-light photoredox catalysis. Tetrahedron Lett. 55, 36–48 (2014)

    Article  CAS  Google Scholar 

  93. X. Huang, J.T. Groves, Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C–H activation. J. Biol. Inorg. Chem. 22, 185–207 (2017)

    Article  CAS  Google Scholar 

  94. X. Wang, R. Ullrich, M. Hofrichter, J.T. Groves, Heme-thiolate ferryl of aromatic peroxygenase is basic and reactive. Proc. Natl. Acad. Sci. U.S.A. 112, 3686–3691 (2015)

    Article  CAS  Google Scholar 

  95. R.J. Martinie, J. Livada, W.C. Chang, M.T. Green, C. Krebs, J.M. Bollinger, A. Silakov, Experimental correlation of substrate position with reaction outcome in the aliphatic halogenase, SyrB2. J. Am. Chem. Soc. 137, 6912–6919 (2015)

    Article  CAS  Google Scholar 

  96. M.L. Matthews, C.S. Neumann, L.A. Miles, T.L. Grove, S.J. Booker, C. Krebs, C.T. Walsh, J.M. Bollinger, Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Proc. Natl. Acad. Sci. U.S.A. 106, 17723–17728 (2009)

    Article  CAS  Google Scholar 

  97. C.-M. Che, V.K.-Y. Lo, C.-Y. Zhou, J.-S. Huang, Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 40, 1950–1975 (2011)

    Article  CAS  Google Scholar 

  98. I. Bauer, H.-J. Knoelker, Iron catalysis in organic synthesis. Chem. Rev. 115, 3170–3387 (2015)

    Article  CAS  Google Scholar 

  99. J.T. Groves, W.J. Kruper, R.C. Haushalter, Hydrocarbon oxidations with oxometalloporphinates. Isolation and reactions of a (Porphinato) manganese(V) complex. J. Am. Chem. Soc. 102, 6375–6377 (1980)

    Article  CAS  Google Scholar 

  100. C.L. Hill, J.A. Smegal, T.J. Henly, Catalytic replacement of unactivated alkane carbon-hydrogen bonds with carbon-X bonds (X = nitrogen, oxygen, chlorine, bromine, or iodine). Coupling of intermolecular hydrocarbon activation by MnIIITPPX Complexes With Phase-Transfer Catalysis. J. Org. Chem. 48, 3277–3281 (1983)

    Article  CAS  Google Scholar 

  101. T. Kojima, R.A. Leising, S.P. Yan, L. Que, Alkane functionalization at nonheme iron centers. Stoichiometric transfer of metal-bound ligands to alkane. J. Am. Chem. Soc. 115, 11328–11335 (1993)

    Article  CAS  Google Scholar 

  102. M. Puri, A.N. Biswas, R. Fan, Y. Guo, L. Que, Modeling non-heme iron halogenases: high-spin oxoiron(IV)–halide complexes that halogenate C–H bonds. J. Am. Chem. Soc. 138, 2484 (2016)

    Article  CAS  Google Scholar 

  103. O. Planas, M. Clemancey, J.C. Latour, A. Company, M. Costas, Structural modeling of iron halogenases: synthesis and reactivity of halide-iron(IV)-oxo compounds. Chem. Commun. 50, 10887–10890 (2014)

    Article  CAS  Google Scholar 

  104. W. Liu, J.T. Groves, Manganese porphyrins catalyze selective C–H bond halogenations. J. Am. Chem. Soc. 132, 12847–12849 (2010)

    Article  CAS  Google Scholar 

  105. W. Liu, J.T. Groves, Manganese catalyzed C–H halogenation. Acc. Chem. Res. 48, 1727–1735 (2015)

    Article  CAS  Google Scholar 

  106. W. Liu, M.J. Cheng, R.J. Nielsen, W.A. Goddard III, J.T. Groves, Probing the C–O bond-formation step in metalloporphyrin catalyzed C–H oxygenation reactions. ACS Catal. 7, 4182–4188 (2017)

    Article  CAS  Google Scholar 

  107. M. Rueda-Becerril, C.C. Sazepin, J.C.T. Leung, T. Okbinoglu, P. Kennepohl, J.F. Paquin, G.M. Sammis, Fluorine transfer to alkyl radicals. J. Am. Chem. Soc. 134, 4026–4029 (2012)

    Article  CAS  Google Scholar 

  108. C.R. Pitts, S. Bloom, R. Woltornist, D.J. Auvenshine, L.R. Ryzhkov, M.A. Siegler, T. Lectka, Direct, catalytic monofluorination of sp3 C–H bonds: a radical-based mechanism with ionic selectivity. J. Am. Chem. Soc. 136, 9780–9791 (2014)

    Article  CAS  Google Scholar 

  109. J.-B. **a, C. Zhu, C. Chen, Visible light-promoted metal-Free C–H activation: diarylketone-catalyzed selective benzylic mono- and difluorination. J. Am. Chem. Soc. 135, 17494–17500 (2013)

    Article  CAS  Google Scholar 

  110. Y. Amaoka, M. Nagatomo, M. Inoue, Metal-free fluorination of C(sp3)-H bonds using a catalytic N-oxyl radical. Org. Lett. 15, 2160–2163 (2013)

    Article  CAS  Google Scholar 

  111. D. O’Hagan, Understanding organofluorine chemistry. an introduction to the C–F bond. Chem. Soc. Rev. 37, 308–319 (2008)

    Article  Google Scholar 

  112. T. Furuya, A.S. Kamlet, T. Ritter, Catalysis for fluorination and trifluoromethylation. Nature 473, 470–477 (2011)

    Article  CAS  Google Scholar 

  113. C. Hollingworth, V. Gouverneur, Transition metal catalysis and nucleophilic fluorination. Chem. Commun. 48, 2929–2942 (2012)

    Article  CAS  Google Scholar 

  114. X. Huang, W. Liu, H. Ren, R. Neelamegam, J.M. Hooker, J.T. Groves, Late stage benzylic C-H fluorination with [18F]Fluoride for PET imaging. J. Am. Chem. Soc. 136, 6842–6845 (2014)

    Article  CAS  Google Scholar 

  115. X.Y. Huang, T.M. Bergsten, J.T. Groves, Manganese-catalyzed late-stage aliphatic C-H azidation. J. Am. Chem. Soc. 137, 5300–5303 (2015)

    Article  CAS  Google Scholar 

  116. P. Thirumurugan, D. Matosiuk, K. Jozwiak, Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev. 113, 4905–4979 (2013)

    Article  CAS  Google Scholar 

  117. J.K. Kochi, Electron-transfer mechanisms for organometallic intermediates in catalytic reactions. Acc. Chem. Res. 7, 351–360 (1974)

    Article  CAS  Google Scholar 

  118. C.L. Jenkins, J.K. Kochi, Ligand transfer of halides (Cl, Br, I) and pseudohalides (SCN, N3, CN) from copper(II) to alkyl radicals. 1. J. Org. Chem. 36, 3095–3102 (1971)

    Google Scholar 

  119. J.K. Kochi, Mechanisms of organic oxidation and reduction by metal complexes. Science 155, 415–424 (1967)

    Article  CAS  Google Scholar 

  120. Z. Zuo, D.T. Ahneman, L. Chu, J.A. Terrett, A.G. Doyle, D.W.C. MacMillan, Merging photoredox with nickel catalysis: coupling of alpha-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014)

    Article  CAS  Google Scholar 

  121. A. Noble, S.J. McCarver, D.W.C. MacMillan, Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides. J. Am. Chem. Soc. 137, 624–627 (2015)

    Article  CAS  Google Scholar 

  122. J.C. Tellis, D.N. Primer, G.A. Molander, Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014)

    Article  CAS  Google Scholar 

  123. Q.M. Kainz, C.D. Matier, A. Bartoszewicz, S.L. Zultanski, J.C. Peters, G.C. Fu, Asymmetric copper-catalyzed C-N cross-couplings induced by visible light. Science 351, 681–684 (2016)

    Article  CAS  Google Scholar 

  124. E.B. Corcoran, M.T. Pirnot, S. Lin, S.D. Dreher, D.A. DiRocco, I.W. Davies, S.L. Buchwald, D.W.C. MacMillan, Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science 353, 279–283 (2016)

    Article  CAS  Google Scholar 

  125. Y. Ye, M.S. Sanford, Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J. Am. Chem. Soc. 134, 9034–9037 (2012)

    Article  CAS  Google Scholar 

  126. M.D. Levin, S. Kim, F.D. Toste, Photoredox catalysis unlocks single-electron elementary steps in transition metal catalyzed cross-coupling. ACS Cent. Sci. 2, 293–301 (2016)

    Article  CAS  Google Scholar 

  127. J. Wang, T. Qin, T.-G. Chen, L. Wimmer, J.T. Edwards, J. Cornella, B. Vokits, S.A. Shaw, P.S. Baran, Nickel-catalyzed cross-coupling of redox-active esters with boronic acids. Angew. Chem. Int. Ed. 55, 9676–9679 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgement and Dedication

This contribution is provided to celebrate the many contributions of William A. Goddard III, whose remarkable career has contributed fundamental advancements across an impressive array of disciplines. More importantly, Bill’s impact as a mentor has positively impacted hundreds of individuals who have benefitted from his knowledge, creativity and enthusiasm. It has been a distinct pleasure to collaborate scientifically with Bill, and we consider ourselves fortunate to count him among our friends. TBG acknowledges support from the U.S. Department of Energy, Office of Basic Energy Sciences (DE-SC0000776), and the National Science Foundation (CHE-1465145). JTG acknowledges support from the U.S. National Science Foundation (CHE-1148597 and CHE-1464578).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Brent Gunnoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liebov, N.S. et al. (2021). Studies of C–H Activation and Functionalization: Combined Computational and Experimental Efforts to Elucidate Mechanisms, Principles, and Catalysts. In: Shankar, S., Muller, R., Dunning, T., Chen, G.H. (eds) Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile. Springer Series in Materials Science, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-18778-1_34

Download citation

Publish with us

Policies and ethics

Navigation