Tumor Niche Disruption and Metastasis: The Role of Epithelial-Mesenchymal Transition (EMT)

  • Chapter
  • First Online:
Molecular and Cell Biology of Cancer

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

In this chapter you will learn that, besides the initial oncogenic mutations that trigger tumorigenesis, cancer cells must have additional molecular changes and morphological modifications in order to metastasize and become malignant. One of the mechanisms that tumor cells may undergo to achieve this state is the Epithelial-Mesenchymal Transition (EMT). After giving a global perspective of what EMT is and of the main EMT activating factors, the particularities of EMT in tumors and the molecular mechanisms that underlie the tumor EMT phenotypic plasticity are adressed. Finally, the contribution of EMT studies for the development of a new generation of cancer therapies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695. https://doi.org/10.1016/J.CELL.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284. https://doi.org/10.1038/nrc2622

    Article  CAS  PubMed  Google Scholar 

  3. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292. https://doi.org/10.1016/j.cell.2011.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558. https://doi.org/10.1016/J.CEB.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  5. Meng F, Wu G (2012) The rejuvenated scenario of epithelial--mesenchymal transition (EMT) and cancer metastasis. Cancer Metastasis Rev 31(3):455–467. https://doi.org/10.1007/s10555-012-9379-3

    Article  CAS  PubMed  Google Scholar 

  6. Mayor R, Carmona-Fontaine C (2010) Kee** in touch with contact inhibition of locomotion. Trends Cell Biol 20(6):319–328. https://doi.org/10.1016/j.tcb.2010.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572. https://doi.org/10.1038/nrc865

    Article  CAS  PubMed  Google Scholar 

  8. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15(2):117–134. https://doi.org/10.1007/s10911-010-9178-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/J.CELL.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  10. Powell DR, Blasky AJ, Britt SG, Artinger KB (2013) Riding the crest of the wave: parallels between the neural crest and cancer in epithelial-to-mesenchymal transition and migration. Wiley Interdiscip Rev Syst Biol Med 5(4):511–522. https://doi.org/10.1002/wsbm.1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chaffer CL, Thompson EW, Williams ED (2007) Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs 185(1–3):7–19. https://doi.org/10.1159/000101298

    Article  PubMed  Google Scholar 

  12. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559 LP–1551564. http://science.sciencemag.org/content/331/6024/1559.abstract

    Article  Google Scholar 

  13. Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454. https://doi.org/10.1038/nrc822

    Article  CAS  PubMed  Google Scholar 

  14. Hay ED (1968) Organization and fine structure of epithelium and mesenchyme in the develo** chick embryo. In: Fleischmajer R, Billingham RE (eds) Epithel. Baltimore, MD, USA, Williams & Wilkins Co

    Google Scholar 

  15. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Natl Rev Mol Cell Biol 15(3):178–196. https://doi.org/10.1038/nrm3758.Molecular

    Article  CAS  Google Scholar 

  16. Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342:6159. http://science.sciencemag.org/content/342/6159/1234850.abstract

    Article  Google Scholar 

  17. Qin Y, Capaldo C, Gumbiner BM, Macara IG (2005) The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J Cell Biol 171(6):1061 LP–1061071. http://jcb.rupress.org/content/171/6/1061.abstract

    Article  Google Scholar 

  18. Whiteman EL, Liu C-J, Fearon ER, Margolis B (2008) The transcription factor snail represses Crumbs3 expression and disrupts apico-basal polarity complexes. Oncogene 27:3875–3879. https://doi.org/10.1038/onc.2008.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang RY-J, Guilford P, Thiery JP (2012) Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci 125(19):4417 LP–4414422. http://jcs.biologists.org/content/125/19/4417.abstract

    Article  Google Scholar 

  20. Kalluri R, Weinberg RA (2009) Review series The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428. https://doi.org/10.1172/JCI39104.1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142. https://doi.org/10.1038/nrm1835

    Article  CAS  PubMed  Google Scholar 

  22. Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR (2008) Cadherin switching. J Cell Sci 121(6):727 LP–727735. http://jcs.biologists.org/content/121/6/727.abstract

    Article  Google Scholar 

  23. Beaty BT, Condeelis J (2014) Digging a little deeper: The stages of invadopodium formation and maturation. Eur J Cell Biol 93(10–12):438–444. https://doi.org/10.1016/J.EJCB.2014.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leong HS, Robertson AE, Stoletov K et al (2014) Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep 8(5):1558–1570. https://doi.org/10.1016/j.celrep.2014.07.050

    Article  CAS  PubMed  Google Scholar 

  25. Nistico P, Bissell MJ, Radisky DC (2012) Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol 4(2):a011908–a011908. https://doi.org/10.1101/cshperspect.a011908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973 LP–973981. http://jcb.rupress.org/content/172/7/973.abstract

    Article  Google Scholar 

  27. Kuriyama S, Mayor R (2008) Molecular analysis of neural crest migration. Philos Trans R Soc B Biol Sci 363(1495):1349 LP–1341362. http://rstb.royalsocietypublishing.org/content/363/1495/1349.abstract

    Article  Google Scholar 

  28. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119(6):1438–1449. https://doi.org/10.1172/JCI38019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. https://doi.org/10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  30. Nieto MA, Cano A (2012) The epithelial–mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Biol 22(5–6):361–368. https://doi.org/10.1016/J.SEMCANCER.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  31. Nieto MA, Sargent MG, Wilkinson DG, Cooke J (1994) Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264(5160):835 LP–835839. http://science.sciencemag.org/content/264/5160/835.abstract

    Article  Google Scholar 

  32. Theveneau E, Mayor R (2012) Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 366(1):34–54. https://doi.org/10.1016/j.ydbio.2011.12.041

    Article  CAS  PubMed  Google Scholar 

  33. Lindsey S, Langhans SA (2014) Crosstalk of oncogenic signaling pathways during epithelial–mesenchymal transition. Front Oncol 4:358. https://www.frontiersin.org/article/10.3389/fonc.2014.00358

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gonzalez DM, Medici D (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7(344):re8 LP–re8re8. http://stke.sciencemag.org/content/7/344/re8.abstract

    Article  Google Scholar 

  35. Vincent T, Neve EPA, Johnson JR et al (2009) A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition. Nat Cell Biol 11:943–950. https://doi.org/10.1038/ncb1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peinado H, Quintanilla M, Cano A (2003) Transforming growth factor β-1 induces Snail transcription factor in epithelial cell lines. J Biol Chem 278(23):21113–21123. https://doi.org/10.1074/JBC.M211304200

    Article  CAS  PubMed  Google Scholar 

  37. Yang Y, Ahn Y-H, Gibbons DL et al (2011) The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200–dependent pathway in mice. J Clin Invest 121(4):1373–1385. https://doi.org/10.1172/JCI42579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Puisieux A, Brabletz T, Caramel J (2014) Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 16(6). https://doi.org/10.1038/ncb2976

  39. Nawshad A, Hay ED (2003) TGFβ3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development. J Cell Biol 163(6):1291 LP–1291301. http://jcb.rupress.org/content/163/6/1291.abstract

    Article  Google Scholar 

  40. Batlle E, Sancho E, Francí C et al (2000) The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89. https://doi.org/10.1038/35000034

    Article  CAS  PubMed  Google Scholar 

  41. Eger A, Aigner K, Sonderegger S et al (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24:2375–2385. https://doi.org/10.1038/sj.onc.1208429

    Article  CAS  PubMed  Google Scholar 

  42. Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939. https://doi.org/10.1016/j.cell.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  43. Fang X, Cai Y, Liu J et al (2011) Twist2 contributes to breast cancer progression by promoting an epithelial–mesenchymal transition and cancer stem-like cell self-renewal. Oncogene 30:4707–4720. https://doi.org/10.1038/onc.2011.181

    Article  CAS  PubMed  Google Scholar 

  44. Yang M-H, Hsu DS-S, Wang H-W et al (2010) Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition. Nat Cell Biol 12:982–992. https://doi.org/10.1038/ncb2099

    Article  CAS  PubMed  Google Scholar 

  45. Navarro P, Lozano E, Cano A (1993) Expression of E- or P-cadherin is not sufficient to modify the morphology and the tumorigenic behavior of murine spindle carcinoma cells. Possible involvement of plakoglobin. J Cell Sci 105(4):923 LP–923934. http://jcs.biologists.org/content/105/4/923.abstract

    Google Scholar 

  46. Miyoshi A, Kitajima Y, Sumi K et al (2004) Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer 90:1265–1273. https://doi.org/10.1038/sj.bjc.6601685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ikenouchi J, Matsuda M, Furuse M, Tsukita S (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116(10):1959 LP–1951967. http://jcs.biologists.org/content/116/10/1959.abstract

    Article  Google Scholar 

  48. Ohkubo T, Ozawa M (2004) The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci 117(9):1675 LP–1671685. http://jcs.biologists.org/content/117/9/1675.abstract

    Article  Google Scholar 

  49. Zheng H, Kang Y (2013) Multilayer control of the EMT master regulators. Oncogene 33:1755–1763. https://doi.org/10.1038/onc.2013.128

    Article  CAS  PubMed  Google Scholar 

  50. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13:97–110. https://doi.org/10.1038/nrc3447

    Article  CAS  PubMed  Google Scholar 

  51. Nakaya Y, Sheng G (2008) Epithelial to mesenchymal transition during gastrulation: An embryological view. Develop Growth Differ 50(9):755–766. https://doi.org/10.1111/j.1440-169X.2008.01070.x

    Article  CAS  Google Scholar 

  52. Nakaya Y, Sheng G (2009) An amicable separation: chick’s way of doing EMT. Cell Adhes Migr 3(2):160–163. https://www.ncbi.nlm.nih.gov/pubmed/19262172

    Article  Google Scholar 

  53. Hardy KM, Yatskievych TA, Konieczka JH, Bobbs AS, Antin PB (2011) FGF signalling through RAS/MAPK and PI3K pathways regulates cell movement and gene expression in the chicken primitive streak without affecting E-cadherin expression. BMC Dev Biol 11(1):20. https://doi.org/10.1186/1471-213X-11-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferrer-Vaquer A, Viotti M, Hadjantonakis A-K (2010) Transitions between epithelial and mesenchymal states and the morphogenesis of the early mouse embryo. Cell Adhes Migr 4(3):447–457. https://doi.org/10.4161/cam.4.3.10771

    Article  Google Scholar 

  55. Le Douarin NM, Dupin E (2018) The “beginnings” of the neural crest. Dev Biol. https://doi.org/10.1016/j.ydbio.2018.07.019

  56. Nakaya Y, Sheng G (2013) EMT in developmental morphogenesis. Cancer Lett 341(1):9–15. https://doi.org/10.1016/J.CANLET.2013.02.037

    Article  CAS  PubMed  Google Scholar 

  57. López-Nouoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1(6–7):303–314. https://doi.org/10.1002/emmm.200900043

    Article  CAS  Google Scholar 

  58. Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. BioEssays 23(10):912–923. https://doi.org/10.1002/bies.1132

    Article  CAS  PubMed  Google Scholar 

  59. Savagner P, Kusewitt DF, Carver EA et al (2004) Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J Cell Physiol 202(3):858–866. https://doi.org/10.1002/jcp.20188

    Article  CAS  Google Scholar 

  60. Shirley SH, Hudson LG, He J, Kusewitt DF (2010) The skinny on slug. Mol Carcinog 49(10):851–861. https://doi.org/10.1002/mc.20674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Desmoulière A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146(1):56–66. https://www.ncbi.nlm.nih.gov/pubmed/7856739

    PubMed  PubMed Central  Google Scholar 

  62. Klingberg F, Hinz B, White ES (2013) The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 229(2):298–309. https://doi.org/10.1002/path.4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fisher R, Pusztai L, Swanton C (2013) Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 108:479–485. https://doi.org/10.1038/bjc.2012.581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168(4):613–628. https://doi.org/10.1016/j.cell.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  65. Huang RY-J, Wong MK, Tan TZ et al (2013) An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis 4:e915. https://doi.org/10.1038/cddis.2013.442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nieto MA, Huang RYYJ, Jackson RAA, Thiery JPP (2016) Emt: 2016. Cell 166(1):21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  67. Cano A, Pérez-Moreno MA, Rodrigo I et al (2000) The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83. https://doi.org/10.1038/35000025

    Article  CAS  PubMed  Google Scholar 

  68. Tam WL, Weinberg RA (2013) The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 19(11):1438–1449. https://doi.org/10.1038/nm.3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829. https://doi.org/10.1016/j.devcel.2008.05.009

    Article  CAS  PubMed  Google Scholar 

  70. Biddle A, Liang X, Gammon L et al (2011) Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res 71(15):5317 LP–5315326. http://cancerres.aacrjournals.org/content/71/15/5317.abstract

    Article  Google Scholar 

  71. Roesch A, Fukunaga-Kalabis M, Schmidt EC et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141(4):583–594. https://doi.org/10.1016/J.CELL.2010.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. O’Brien-Ball C, Biddle A (2017) Reprogramming to developmental plasticity in cancer stem cells. Dev Biol 430(2):266–274. https://doi.org/10.1016/j.ydbio.2017.07.025

    Article  CAS  PubMed  Google Scholar 

  73. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374. https://doi.org/10.1038/nrc1075

    Article  CAS  PubMed  Google Scholar 

  74. Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14:777–783. https://doi.org/10.1038/ncb2548

    Article  CAS  PubMed  Google Scholar 

  75. Cheung KJ, Ewald AJ (2016) A collective route to metastasis: seeding by tumor cell clusters. Science 352(6282). https://doi.org/10.1126/science.aaf6546

  76. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(23):5591 LP–5595596. http://jcs.biologists.org/content/125/23/5591.abstract

    Article  Google Scholar 

  77. Chang Q, Bournazou E, Sansone P et al (2013) The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia 15(7):848–862. https://www.ncbi.nlm.nih.gov/pubmed/23814496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Robinson BD, Sica GL, Liu Y-F et al (2009) Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 15(7):2433 LP–2432441. http://clincancerres.aacrjournals.org/content/15/7/2433.abstract

    Article  Google Scholar 

  79. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chatterjee S, Seifried L, Feigin ME et al (2012) Dysregulation of cell polarity proteins synergize with oncogenes or the microenvironment to induce invasive behavior in epithelial cells. Schneider-Stock R, ed. PLoS One 7(4):e34343. https://doi.org/10.1371/journal.pone.0034343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hu X, Li D, Zhang W, Zhou J, Tang B, Li L (2012) Matrix metalloproteinase-9 expression correlates with prognosis and involved in ovarian cancer cell invasion. Arch Gynecol Obstet 286(6):1537–1543. https://doi.org/10.1007/s00404-012-2456-6

    Article  CAS  PubMed  Google Scholar 

  82. Wang J, Ye C, Lu D et al (2017) Matrix metalloproteinase-1 expression in breast carcinoma: a marker for unfavorable prognosis. Oncotarget 8(53):91379–91390. https://doi.org/10.18632/oncotarget.20557

    Article  PubMed  PubMed Central  Google Scholar 

  83. Inoue T, Yashiro M, Nishimura S, Maeda K, Sawada T, Ogawa Y, Sowa MCK (1999) Matrix metalloproteinase-1 expression is a prognostic factor for patients with advanced gastric cancer. Int J Mol Med 4(1):73–77

    CAS  PubMed  Google Scholar 

  84. Zucker SVJ (2004) Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 23(1–2):101–117

    Article  CAS  PubMed  Google Scholar 

  85. Noe V, Fingleton B, Jacobs K et al (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114(1):111 LP–111118. http://jcs.biologists.org/content/114/1/111.abstract

    Google Scholar 

  86. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101

    CAS  PubMed  Google Scholar 

  87. Lu X, Kang Y (2007) Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia 12(2):153–162. https://doi.org/10.1007/s10911-007-9047-3

    Article  PubMed  Google Scholar 

  88. Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66(23):11089–11093. https://doi.org/10.1158/0008-5472.CAN-06-2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9(4):285–293. https://doi.org/10.1038/nrc2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Peinado H, Alečković M, Lavotshkin S et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891. https://doi.org/10.1038/nm.2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Peinado H, Zhang H, Matei IR et al (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17(5). https://doi.org/10.1038/nrc.2017.6

  92. Hoshino A, Costa-Silva B, Shen T-L et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335. https://doi.org/10.1038/nature15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gupta GP, Nguyen DX, Chiang AC et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770. https://doi.org/10.1038/nature05760

    Article  CAS  PubMed  Google Scholar 

  94. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370. https://doi.org/10.1038/nm.2537

    Article  CAS  PubMed  Google Scholar 

  95. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168(4). https://doi.org/10.1016/j.cell.2016.11.037

  96. Brabletz T (2012) To differentiate or not–routes towards metastasis. Nat Rev Cancer 12(6):425–436. https://doi.org/10.1038/nrc3265. Review. PubMed PMID: 22576165

  97. Hugo H, Ackland ML, Blick T et al (2007) Epithelial - Mesenchymal and mesenchymal - Epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383. https://doi.org/10.1002/jcp.21223

    Article  CAS  PubMed  Google Scholar 

  98. Yao D, Dai C, Peng S (2011) Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res 9(12):1608–1620. https://doi.org/10.1158/1541-7786.MCR-10-0568

    Article  CAS  PubMed  Google Scholar 

  99. Gao D, Joshi N, Choi H et al (2012) Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res 72(6):1384 LP–1381394. http://cancerres.aacrjournals.org/content/72/6/1384.abstract

    Article  Google Scholar 

  100. Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9(1):179. https://doi.org/10.1186/1476-4598-9-179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jia D, Jolly MK, Kulkarni P, Levine H (2017) Phenotypic plasticity and cell fate decisions in cancer: Insights from dynamical systems theory. Cancers (Basel). 9(7):1–19. https://doi.org/10.3390/cancers9070070

    Article  CAS  Google Scholar 

  102. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J (2012) Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22(6):725–736. https://doi.org/10.1016/j.ccr.2012.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Beerling E, Seinstra D, de Wit E et al (2016) Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep 14(10). https://doi.org/10.1016/j.celrep.2016.02.034

  104. Diepenbruck M, Christofori G (2016) Epithelial–mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol 43:7–13. https://doi.org/10.1016/J.CEB.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  105. Zheng X, Carstens JL, Kim J et al (2015) Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527(7579). https://doi.org/10.1038/nature16064

  106. Fischer KR, Durrans A, Lee S et al (2015) Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527(7579). https://doi.org/10.1038/nature15748

  107. Soucheray M, Capelletti M, Pulido I et al (2015) Intratumoral heterogeneity in EGFR-mutant NSCLC results in divergent resistance mechanisms in response to EGFR tyrosine kinase inhibition. Cancer Res 75(20):4372 LP–4374383. http://cancerres.aacrjournals.org/content/75/20/4372.abstract

    Article  Google Scholar 

  108. Baccelli I, Schneeweiss A, Riethdorf S et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31:539–544. https://doi.org/10.1038/nbt.2576

    Article  CAS  PubMed  Google Scholar 

  109. Tran HD, Luitel K, Kim M, Zhang K, Longmore GD, Tran DD (2014) Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res 74(21):6330 LP–6336340. http://cancerres.aacrjournals.org/content/74/21/6330.abstract

    Article  Google Scholar 

  110. Krebs AM, Mitschke J, Lasierra Losada M et al (2017) The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 19:518–529. https://doi.org/10.1038/ncb3513

    Article  CAS  PubMed  Google Scholar 

  111. Caramel J, Papadogeorgakis E, Hill L et al (2013) A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 24(4):466–480. https://doi.org/10.1016/J.CCR.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  112. Denecker G, Vandamme N, Akay Ö et al (2014) Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death Differ 21:1250–1261. https://doi.org/10.1038/cdd.2014.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Biddle A, Mackenzie IC (2012) Cancer stem cells and EMT in carcinoma. Cancer Metastasis Rev 31(1):285–293. https://doi.org/10.1007/s10555-012-9345-0

    Article  Google Scholar 

  114. Wellner U, Brabletz T, Keck T (2010) ZEB1 in pancreatic cancer. Cancers (Basel) 2(3):1617–1628. https://doi.org/10.3390/cancers2031617

    Article  CAS  Google Scholar 

  115. Kurrey NK, Jalgaonkar SP, Joglekar AV et al (2009) Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27(9):2059–2068. https://doi.org/10.1002/stem.154

    Article  CAS  PubMed  Google Scholar 

  116. Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10(6):717–728. https://doi.org/10.1016/J.STEM.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  117. Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23(1):675–699. https://doi.org/10.1146/annurev.cellbio.22.010305.104154

    Article  CAS  PubMed  Google Scholar 

  118. Atena M, Reza AM, Mehran G (2014) A review on the biology of cancer stem cells. Stem Cell Discov 04(04):83–89. https://doi.org/10.4236/scd.2014.44009

    Article  CAS  Google Scholar 

  119. D’Andrea V, Panarese A, Tonda M, Biffoni MMM (2017) Cancer stem cells as functional biomarkers. Cancer Biomark 20(3):231–234. https://doi.org/10.3233/CBM-151176

    Article  PubMed  Google Scholar 

  120. Yang M-H, Imrali A, Heeschen C (2015) Circulating cancer stem cells: the importance to select. Chin J Cancer Res 27(5):437–449. https://doi.org/10.3978/j.issn.1000-9604.2015.04.08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kahlert UD, Joseph JV, Kruyt FAE (2017) EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Mol Oncol 11(7):860–877. https://doi.org/10.1002/1878-0261.12085

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sarkar S, Horn G, Moulton K et al (2013) Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci 14(10):21087–21113. https://doi.org/10.3390/ijms141021087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pencheva N, Tavazoie SF (2013) Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 15(6):546–554. https://doi.org/10.1038/ncb2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xu Q, Deng F, Qin Y et al (2016) Long non-coding RNA regulation of epithelial–mesenchymal transition in cancer metastasis. Cell Death Dis 7:e2254. https://doi.org/10.1038/cddis.2016.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Biamonti G, Bonomi S, Gallo S, Ghigna C (2012) Making alternative splicing decisions during epithelial-to-mesenchymal transition (EMT). Cell Mol Life Sci 69(15):2515–2526. https://doi.org/10.1007/s00018-012-0931-7

    Article  CAS  PubMed  Google Scholar 

  126. Díaz VM, Viñas-Castells R, García de Herreros A (2014) Regulation of the protein stability of EMT transcription factors. Cell Adhes Migr 8(4):418–428. https://doi.org/10.4161/19336918.2014.969998

    Article  Google Scholar 

  127. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692. https://doi.org/10.1016/J.CELL.2007.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159. https://doi.org/10.1056/NEJMra072067

    Article  CAS  PubMed  Google Scholar 

  129. Lujambio A, Ropero S, Ballestar E et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67(4):1424 LP–1421429. http://cancerres.aacrjournals.org/content/67/4/1424.abstract

    Article  Google Scholar 

  130. Matsumura N, Huang Z, Mori S et al (2011) Epigenetic suppression of the TGF-beta pathway revealed by transcriptome profiling in ovarian cancer. Genome Res 21(1):74–82. https://doi.org/10.1101/gr.108803.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dong Z, Guo W, Guo Y, Kuang G, Yang Z (2012) Concordant promoter methylation of transforming growth factor-beta receptor types I and II occurs early in esophageal squamous cell carcinoma. Am J Med Sci 343(5):375–381. https://doi.org/10.1097/MAJ.0B013E3182253430

    Article  PubMed  Google Scholar 

  132. Einav Nili G-Y, Saito Y, Egger G, Jones PA (2008) Cancer epigenetics: modifications, screening, and therapy. Annu Rev Med 59(1):267–280. https://doi.org/10.1146/annurev.med.59.061606.095816

    Article  CAS  Google Scholar 

  133. Skrypek N, Goossens S, De Smedt E, Vandamme N, Berx G (2017) Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity. Trends Genet 33(12):943–959. https://doi.org/10.1016/j.tig.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  134. Song SJ, Poliseno L, Song MS et al (2013) MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154(2):311–324. https://doi.org/10.1016/j.cell.2013.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688. https://doi.org/10.1038/nature06174

    Article  CAS  PubMed  Google Scholar 

  136. He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833. https://doi.org/10.1038/nature03552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K (2010) Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39(5):761–772. https://doi.org/10.1016/j.molcel.2010.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Olson P, Lu J, Zhang H et al (2009) MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 23(18):2152–2165. http://genesdev.cshlp.org/content/23/18/2152.abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Breving K, Esquela-Kerscher A (2010) The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 42(8):1316–1329. https://doi.org/10.1016/J.BIOCEL.2009.09.016

    Article  CAS  PubMed  Google Scholar 

  140. Jiang C, Li X, Zhao H, Liu H (2016) Long non-coding RNAs: potential new biomarkers for predicting tumor invasion and metastasis. Mol Cancer 15(1):1–15. https://doi.org/10.1186/s12943-016-0545-z

    Article  CAS  Google Scholar 

  141. Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J (2013) Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 333(2):213–221. https://doi.org/10.1016/J.CANLET.2013.01.033

    Article  CAS  PubMed  Google Scholar 

  142. Takai D, Gonzales FA, Tsai YC, Thayer MJJP (2001) Large scale map** of methylcytosines in CTCF-binding sites in the human H19 promoter and aberrant hypomethylation in human bladder cancer. Hum Mol Genet 10(23):2619–2626

    Article  CAS  PubMed  Google Scholar 

  143. Pradella D, Naro C, Sette C, Ghigna C (2017) EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer 16(1):1–19. https://doi.org/10.1186/s12943-016-0579-2

    Article  CAS  Google Scholar 

  144. Warzecha CC, Shen S, **ng Y, Carstens RP (2009) The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events. RNA Biol 6(5):546–562. https://www.ncbi.nlm.nih.gov/pubmed/19829082

    Article  CAS  PubMed  Google Scholar 

  145. Warzecha CC, Jiang P, Amirikian K et al (2010) An ESRP-regulated splicing programme is abrogated during the epithelial–mesenchymal transition. EMBO J 29(19):3286 LP–3283300. http://emboj.embopress.org/content/29/19/3286.abstract

    Article  Google Scholar 

  146. Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI (2015) Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 35:2413. https://doi.org/10.1038/onc.2015.318

    Article  CAS  PubMed  Google Scholar 

  147. Pattabiraman DR, Weinberg RA (2016) Targeting the epithelial-to-mesenchymal transition: the case for differentiation-based therapy. Cold Spring Harb Symp Quant Biol 81(1). https://doi.org/10.1101/sqb.2016.81.030957

  148. Elaskalani O, Razak NBA, Falasca M, Metharom P (2017) Epithelial-mesenchymal transition as a therapeutic target for overcoming chemoresistance in pancreatic cancer. World J Gastrointest Oncol 9(1):37–41. https://doi.org/10.4251/wjgo.v9.i1.37

    Article  PubMed  PubMed Central  Google Scholar 

  149. Singh M, Yelle N, Venugopal C, Singh SK (2018) EMT: mechanisms and therapeutic implications. Pharmacol Ther 182(August 2017):80–94. https://doi.org/10.1016/j.pharmthera.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  150. Sarkar S, Goldgar S, Byler S, Rosenthal S, Heerboth S (2013) Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy. Epigenomics 5(1):87–94. https://doi.org/10.2217/epi.12.68

    Article  CAS  PubMed  Google Scholar 

  151. Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S (2014) Use of epigenetic drugs in disease: an overview. Genet Epigenet 6:GEG.S12270. https://doi.org/10.4137/GEG.S12270

    Article  CAS  Google Scholar 

  152. Sebestyén E, Singh B, Miñana B et al (2016) Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks. Genome Res 26(6):732–744

    Article  PubMed  PubMed Central  Google Scholar 

  153. Bonomi S, Gallo S, Catillo M, Pignataro D, Biamonti G, Ghigna C (2013) Oncogenic alternative splicing switches: role in cancer progression and prospects for therapy. Int J Cell Biol 2013:962038. https://doi.org/10.1155/2013/962038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11:125–140. https://doi.org/10.1038/nrd3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rigo F, Seth PP, Bennett CF (2014) Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. In: Yeo GW (ed) Systems biology of RNA binding proteins. Springer New York, New York, NY, pp 303–352. https://doi.org/10.1007/978-1-4939-1221-6_9

    Chapter  Google Scholar 

  156. McClorey G, Wood MJ (2015) An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr Opin Pharmacol 24:52–58. https://doi.org/10.1016/J.COPH.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  157. Sommers CL, Heckford SE, Skerker JM et al (1992) Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res 52(19):5190 LP–5195197. http://cancerres.aacrjournals.org/content/52/19/5190.abstract

    Google Scholar 

  158. Arumugam T, Ramachandran V, Fournier KF et al (2009) Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 69(14):5820 LP–5825828. http://cancerres.aacrjournals.org/content/69/14/5820.abstract

    Article  Google Scholar 

  159. McConkey DJ, Choi W, Marquis L et al (2009) Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev 28(3):335–344. https://doi.org/10.1007/s10555-009-9194-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wahl GM, Spike BT (2017) Cell state plasticity, stem cells, EMT, and the generation of intra-tumoral heterogeneity. npj Breast Cancer 3(1). https://doi.org/10.1038/s41523-017-0012-z

  161. Hölzel M, Bovier A, Tüting T (2013) Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer 13:365–376. https://doi.org/10.1038/nrc3498

    Article  CAS  PubMed  Google Scholar 

  162. Terry S, Savagner P, Ortiz-Cuaran S et al (2017) New insights into the role of EMT in tumor immune escape. Mol Oncol 11(7). https://doi.org/10.1002/1878-0261.12093

  163. Housman G, Byler S, Heerboth S et al (2014) Drug resistance in cancer: an overview. Cancers 6(3). https://doi.org/10.3390/cancers6031769

  164. Wan L, Pantel K, Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nat Med 19:1450–1464. https://doi.org/10.1038/nm.3391

    Article  CAS  PubMed  Google Scholar 

  165. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18:128–134. https://doi.org/10.1038/nrc.2017.118

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Zilhão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zilhão, R., Neves, H. (2019). Tumor Niche Disruption and Metastasis: The Role of Epithelial-Mesenchymal Transition (EMT). In: Fior, R., Zilhão, R. (eds) Molecular and Cell Biology of Cancer. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-11812-9_9

Download citation

Publish with us

Policies and ethics

Navigation