Molecular Assessment of Monoclonal Antibody-Based Therapeutics Enabling Lead Selection for Clinical Development

  • Chapter
Biobetters

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 19))

Abstract

Monoclonal antibodies (mAbs) and mAb-based therapeutics (e.g. antibody drug conjugates, bispecifics, Fab fragments, Fc-fusion proteins, etc.) have become an important class of drugs for the treatment of unmet medical needs. Efforts continue to develop mAb-based therapies for novel targets and indications as well as to develop “biobetters” to overcome limitations of existing approved products related to efficacy, safety, pharmacokinetics, and manufacturability/delivery. “Molecular-Assessment” (MA) or “Developability Assessment” initiatives have become an inherent part of early/pre-formulation work at several biopharmaceutical companies to ensure the success and de-risk technical hurdles associated with process development of mAb-based therapeutics. MA studies enable selection of an optimal “lead” mAb-based molecule in terms of a product “profile” encompassing manufacturability, stability, and delivery and inform regarding potential liabilities that may be associated with the lead molecule. For biobetters, MA studies also ensure that the lead molecule is indeed “better” with respect to the selected attribute. This chapter outlines the MA strategy, the results of which dictate decisions regarding lead candidates and the antibody engineering technologies that can be used to surmount the typical stability/delivery concerns for mAbs, the experimental tools used to assess these concerns, and provides some case studies exemplifying implementation of MA in lead molecule selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler M (2012) INJECTABLES-challenges in the development of pre-filled syringes for biologics from a formulation scientist’s point of view. Am Pharm Rev 15:96

    CAS  Google Scholar 

  • Arvinte T, Palais C, Green-Trexler E, Gregory S, Mach H, Narasimhan C, Shameem M (2013) Aggregation of biopharmaceuticals in human plasma and human serum. MAbs 5:491–500

    Article  PubMed Central  PubMed  Google Scholar 

  • Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88:7978–7982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowers PM, Horlick RA, Neben TY, Toobian RM, Tomlinson GL, Dalton JL, Jones HA, Chen A, Altobell L 3rd, Zhang X, Macomber JL, Krapf IP, Wu BF, McConnell A, Chau B, Holland T, Berkebile AD, Neben SS, Boyle WJ, King DJ (2011) Coupling mammalian cell surface display with somatic hypermutation for the discovery and maturation of human antibodies. Proc Natl Acad Sci U S A 108:20455–20460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G, Fan Y-X, Kirshner S, Verthelyi D, Kozlowski S, Clouse KA, Swann PG, Rosenberg A, Cherney B (2009) Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci 98:1201–1205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 89:4285–4289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL (2009) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci 106:11937–11942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chirinoand AJ, Mire-Sluis A (2004) Characterizing biological products and assessing comparability following manufacturing changes. Nat Biotechnol 22:1383–1391

    Article  Google Scholar 

  • Connolly BD, Petry C, Yadav S, Demeule B, Ciaccio N, Moore JM, Shire SJ, Gokarn YR (2012) Weak interactions govern the viscosity of concentrated antibody solutions: high-throughput analysis using the diffusion interaction parameter. Biophys J 103:69–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruine AP, Arends JW, Hoogenboom HR (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274:18218–18230

    Article  PubMed  Google Scholar 

  • Doessegger L, Mahler H-C, Szczesny P, Rockstroh H, Kallmeyer G, Langenkamp A, Herrmann J, Famulare J (2012) The potential clinical relevance of visible particles in parenteral drugs. J Pharm Sci 101:2635–2644

    Article  CAS  PubMed  Google Scholar 

  • Duand W, Klibanov AM (2011) Hydrophobic salts markedly diminish viscosity of concentrated protein solutions. Biotechnol Bioeng 108:632–636

    Article  Google Scholar 

  • Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170

    Article  CAS  PubMed  Google Scholar 

  • Hensel M, Steurer R, Fichtl J, Elger C, Wedekind F, Petzold A, Schlothauer T, Molhoj M, Reusch D, Bulau P (2011) Identification of potential sites for tryptophan oxidation in recombinant antibodies using tert-butylhydroperoxide and quantitative LC-MS. PLoS One 6:e17708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hermeling S, Crommelin DA, Schellekens H, Jiskoot W (2004) Structure-immunogenicity relationships of therapeutic proteins. Pharm Res 21:897–903

    Article  CAS  PubMed  Google Scholar 

  • Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, van Hegelsom R, Neer NC, Nastri HG, Rondon IJ, Leeds JA, Hufton SE, Huang L, Kashin I, Devlin M, Kuang G, Steukers M, Viswanathan M, Nixon AE, Sexton DJ, Hoogenboom HR, Ladner RC (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344–348

    Article  CAS  PubMed  Google Scholar 

  • Hotzel I, Theil FP, Bernstein LJ, Prabhu S, Deng R, Quintana L, Lutman J, Sibia R, Chan P, Bumbaca D, Fielder P, Carter PJ, Kelley RF (2012) A strategy for risk mitigation of antibodies with fast clearance. MAbs 4:753–760

    Article  PubMed Central  PubMed  Google Scholar 

  • Hudson SD, Sarangapani P, Pathak JA, Migler KB (2014) A microliter capillary rheometer for characterization of protein solutions. J Pharm Sci 104(2):678–685

    Article  PubMed  Google Scholar 

  • Hünig T (2012) The storm has cleared: lessons from the CD28 superagonist TGN1412 trial. Nat Rev Immunol 12:317–318

    Article  PubMed  Google Scholar 

  • Iwao Y, Anraku M, Hiraike M, Kawai K, Nakajou K, Kai T, Suenaga A, Otagiri M (2006) The structural and pharmacokinetic properties of oxidized human serum albumin, advanced oxidation protein products (AOPP). Drug Metab Pharmacokinet 21:140–146

    Article  CAS  PubMed  Google Scholar 

  • Jakobovits A, Amado RG, Yang X, Roskos L, Schwab G (2007) From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol 25:1134–1143

    Article  CAS  PubMed  Google Scholar 

  • Jezek J, Rides M, Derham B, Moore J, Cerasoli E, Simler R, Perez-Ramirez B (2011) Viscosity of concentrated therapeutic protein compositions. Adv Drug Deliv Rev 63:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Ji JA, Zhang B, Cheng W, Wang YJ (2009) Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization. J Pharm Sci 98:4485–4500

    Article  CAS  PubMed  Google Scholar 

  • Kanai S, Liu J, Patapoff T, Shire SJ (2008) Reversible self-association of a concentrated monoclonal antibody solution mediated by Fab-Fab interaction that impacts solution viscosity. J Pharm Sci 97(10):4219–4227

    Article  CAS  PubMed  Google Scholar 

  • Kohlerand G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  Google Scholar 

  • Kumar S, Singh S, Wang X, Rup B, Gill D (2011) Coupling of aggregation and Immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions. Pharm Res 28:949–961

    Article  CAS  PubMed  Google Scholar 

  • Kumru OS, Liu J, Ji JA, Cheng W, Wang YJ, Wang T, Joshi SB, Middaugh CR, Volkin DB (2012) Compatibility, physical stability, and characterization of an IgG4 monoclonal antibody after dilution into different intravenous administration bags. J Pharm Sci 101:3636–3650

    Article  CAS  PubMed  Google Scholar 

  • Lee CV, Liang WC, Dennis MS, Eigenbrot C, Sidhu SS, Fuh G (2004) High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J Mol Biol 340:1073–1093

    Article  CAS  PubMed  Google Scholar 

  • Li B, Fouts AE, Stengel K, Luan P, Dillon M, Liang WC, Feierbach B, Kelley RF, Hotzel I (2014a) In vitro affinity maturation of a natural human antibody overcomes a barrier to in vivo affinity maturation. MAbs 6:437–445

    Article  PubMed Central  PubMed  Google Scholar 

  • Li L, Kumar S, Buck P, Burns C, Lavoie J, Singh S, Warne N, Nichols P, Luksha N, Boardman D (2014b) Concentration dependent viscosity of monoclonal antibody solutions: explaining experimental behavior in terms of molecular properties. Pharm Res 31(11):3161–3167

    Article  CAS  PubMed  Google Scholar 

  • Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ, Binder-Scholl GK, Smethurst DP, Gerry AB, Pumphrey NJ, Bennett AD, Brewer JE, Dukes J, Harper J, Tayton-Martin HK, Jakobsen BK, Hassan NJ, Kalos M, June CH (2013) Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122:863–871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23:1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Mallaney M, Wang S-H, Sreedhara A (2014) Effect of ambient light on monoclonal antibody product quality during small-scale mammalian cell culture process in clear glass bioreactors. Biotechnol Prog 30:562–570

    Article  CAS  PubMed  Google Scholar 

  • Manning M, Chou D, Murphy B, Payne R, Katayama D (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27:544–575

    Article  PubMed  Google Scholar 

  • Mason BD, Zhang-van Enk J, Zhang L, Remmele RL Jr, Zhang J (2010) Liquid-liquid phase separation of a monoclonal antibody and nonmonotonic influence of hofmeister anions. Biophys J 99:3792–3800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy AJ, Macdonald LE, Stevens S, Karow M, Dore AT, Pobursky K, Huang TT, Poueymirou WT, Esau L, Meola M, Mikulka W, Krueger P, Fairhurst J, Valenzuela DM, Papadopoulos N, Yancopoulos GD (2014) Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci U S A 111:5153–5158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura G, Chai N, Park S, Chiang N, Lin Z, Chiu H, Fong R, Yan D, Kim J, Zhang J, Lee WP, Estevez A, Coons M, Xu M, Lupardus P, Balazs M, Swem LR (2013) An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. Cell Host Microbe 14:93–103

    Article  CAS  PubMed  Google Scholar 

  • Narasimhan C, Mach H, Shameem M (2012) High-dose monoclonal antibodies via the subcutaneous route: challenges and technical solutions, an industry perspective. Ther Deliv 3:889–900

    Article  CAS  PubMed  Google Scholar 

  • Narhi LO, Schmit J, Bechtold-Peters K, Sharma D (2012) Classification of protein aggregates. J Pharm Sci 101:493–498

    Article  CAS  PubMed  Google Scholar 

  • Nishi H, Miyajima M, Nakagami H, Noda M, Uchiyama S, Fukui K (2010) Phase separation of an IgG1 antibody solution under a low ionic strength condition. Pharm Res 27:1348–1360

    Article  CAS  PubMed  Google Scholar 

  • Pantua H, Diao J, Ultsch M, Hazen M, Mathieu M, McCutcheon K, Takeda K, Date S, Cheung TK, Phung Q, Hass P, Arnott D, Hongo JA, Matthews DJ, Brown A, Patel AH, Kelley RF, Eigenbrot C, Kapadia SB (2013) Glycan shifting on hepatitis C virus (HCV) E2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies. J Mol Biol 425:1899–1914

    Article  CAS  PubMed  Google Scholar 

  • Philoand JS, Arakawa T (2009) Mechanisms of protein aggregation. Curr Pharm Biotechnol 10:348–351

    Article  Google Scholar 

  • Porterand CJH, Charman SA (2000) Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci 89:297–310

    Article  Google Scholar 

  • Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghans RP, Waldmann TA (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A 86:10029–10033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramachanderand R, Rathore N (2013) Molecule and manufacturability assessment leading to robust commercial formulation for therapeutic proteins. In: Kolhe P, Shah M, Rathore N (eds) Sterile product development: formulation, process, quality, and regulatory considerations. Springer, New York, pp 33–45

    Chapter  Google Scholar 

  • Rathore AS, Godavarti R, Kumar V, Tugcu N (2013) Evolution of the monoclonal antibody purification platform. Biopharm Int 26:32–37

    CAS  Google Scholar 

  • Riechmann L, Clark M, Waldmann H, Winter G (1988) Resha** human antibodies for therapy. Nature 332:323–327

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg A (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8:E501–E507

    Article  PubMed Central  PubMed  Google Scholar 

  • Rothe C, Urlinger S, Lohning C, Prassler J, Stark Y, Jager U, Hubner B, Bardroff M, Pradel I, Boss M, Bittlingmaier R, Bataa T, Frisch C, Brocks B, Honegger A, Urban M (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376:1182–1200

    Article  CAS  PubMed  Google Scholar 

  • Saluja A, Badkar AV, Zeng DL, Kalonia DS (2007) Ultrasonic rheology of a monoclonal antibody (IgG(2)) solution: implications for physical stability of proteins in high concentration formulations. J Pharm Sci 96:3181–3195

    Article  CAS  PubMed  Google Scholar 

  • Schmit JD, He F, Mishra S, Ketchem RR, Woods CE, Kerwin BA (2014) Entanglement model of antibody viscosity. J Phys Chem B 118:5044–5049

    Article  CAS  PubMed  Google Scholar 

  • Shire SJ, Shahrokh Z, Liu J (2004) Challenges in the development of high protein concentration formulations. J Pharm Sci 93:1390–1402

    Article  CAS  PubMed  Google Scholar 

  • Shukla AA, Hubbard B, Tressel T, Guhan S, Low D (2007) Downstream processing of monoclonal antibodies—application of platform approaches. J Chromatogr B 848:28–39

    Article  CAS  Google Scholar 

  • Soderlind E, Strandberg L, Jirholt P, Kobayashi N, Alexeiva V, Aberg AM, Nilsson A, Jansson B, Ohlin M, Wingren C, Danielsson L, Carlsson R, Borrebaeck CA (2000) Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol 18:852–856

    Article  CAS  PubMed  Google Scholar 

  • Sydow JF, Lipsmeier F, Larraillet V, Hilger M, Mautz B, Mølhøj M, Kuentzer J, Klostermann S, Schoch J, Voelger HR, Regula JT, Cramer P, Papadimitriou A, Kettenberger H (2014) Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PLoS One 9:e100736

    Article  PubMed Central  PubMed  Google Scholar 

  • Thayer AM (2013) Biobetters may be a better bet. Chem Eng News 91:24–25

    Google Scholar 

  • Tiller T, Schuster I, Deppe D, Siegers K, Strohner R, Herrmann T, Berenguer M, Poujol D, Stehle J, Stark Y, Hessling M, Daubert D, Felderer K, Kaden S, Kolln J, Enzelberger M, Urlinger S (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5:445–470

    Article  PubMed Central  PubMed  Google Scholar 

  • Torosantucci R, Schöneich C, Jiskoot W (2014) Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res 31:541–553

    Article  CAS  PubMed  Google Scholar 

  • Wakankar AA, Borchardt RT, Eigenbrot CE, Shia S, Wang YJ, Shire SJ, Liu JL (2007a) A spartate isomerization in the complementarity-determining regions of two closely related monoclonal antibodies. Biochemistry 46:1534–1544

    Article  CAS  PubMed  Google Scholar 

  • Wakankar AA, Borchardt RT, Eigenbrot C, Shia S, Wang YJ, Shire SJ, Liu JL (2007b) Aspartate isomerization in the complementarity-determining regions of two closely related monoclonal antibodies. Biochemistry 46:1534–1544

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Singh S, Zeng DL, King K, Nema S (2007) Antibody structure, instability, and formulation. J Pharm Sci 96:1–26

    Article  CAS  PubMed  Google Scholar 

  • Wrammert J, Smith K, Miller J, Langley WA, Kokko K, Larsen C, Zheng NY, Mays I, Garman L, Helms C, James J, Air GM, Capra JD, Ahmed R, Wilson PC (2008) Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453:667–671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadav S, Liu J, Shire SJ, Kalonia DS (2010) Specific interactions in high concentration antibody solutions resulting in high viscosity. J Pharm Sci 99:1152–1168

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Xu W, Dukleska S, Benchaar S, Mengisen S, Antochshuk V, Cheung J, Mann L, Babadjanova Z, Rowand J, Gunawan R, McCampbell A, Beaumont M, Meininger D, Richardson D, Ambrogelly A (2013) Developability studies before initiation of process development: improving manufacturability of monoclonal antibodies. MAbs 5:787–794

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu BL, Vizel A, Young M, Morando A, He B (2007) Impact of degradations on bioactivity: a reflection from a monoclonal antibody. Abstracts of Papers, 234th ACS National Meeting, Boston, MA, United States, August 19–23, 2007:BIOT-136

    Google Scholar 

  • Zhai W, Glanville J, Fuhrmann M, Mei L, Ni I, Sundar PD, Van Blarcom T, Abdiche Y, Lindquist K, Strohner R, Telman D, Cappuccilli G, Finlay WJ, Van den Brulle J, Cox DR, Pons J, Rajpal A (2011) Synthetic antibodies designed on natural sequence landscapes. J Mol Biol 412:55–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Boyan Zhang, Michael Kim, Li Yi, Benson Gikanga, Sabrina Lo, Rita Wong, Jessica Yang, Ankit Patel, and Bill Galush for contributing data presented in the case studies. The authors acknowledge Jamie Moore, William Galush, Barthélemy Demeule, Karen Rutherford, Samir Sane and Laura Simmons for their careful review of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Sharma, V.K., Kelley, R.F. (2015). Molecular Assessment of Monoclonal Antibody-Based Therapeutics Enabling Lead Selection for Clinical Development. In: Rosenberg, A., Demeule, B. (eds) Biobetters. AAPS Advances in the Pharmaceutical Sciences Series, vol 19. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2543-8_10

Download citation

Publish with us

Policies and ethics

Navigation