Log in

Oxidation of Therapeutic Proteins and Peptides: Structural and Biological Consequences

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Oxidation is a common degradation pathway that affects therapeutic proteins and peptides during production, purification, formulation, transportation, storage and handling of solid and liquid preparations. In the present work we review the scientific literature about structural and biological consequences of protein/peptide oxidation. Representative examples are discussed of specific products whose oxidation has been recently studied, including monoclonal antibodies, calcitonin, granulocyte colony-stimulating factor, growth hormone, insulin, interferon alpha and beta, oxytocin and parathyroid hormone. These examples illustrate that oxidation often leads to modifications of higher-order structures, including aggregate induction, and can generate products that are pharmacokinetically different, biologically less active and/or potentially more immunogenic than their native counterpart. It is therefore crucially important during the pharmaceutical development of therapeutic proteins and peptides to comprehensively characterize oxidation products and evaluate the impact of oxidation-induced structural modifications on the biological properties of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39.

    Article  CAS  PubMed  Google Scholar 

  2. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185:129–88.

    Article  CAS  PubMed  Google Scholar 

  3. Mohammadian-Mosaabadi J, Naderi-Manesh H, Maghsoudi N, Khalilzadeh R, Shojaosadati SA, Ebrahimi M. Effect of oxidative stress on the production of recombinant human interferon-gamma in Escherichia coli. Biotechnol Appl Biochem. 2005;41:37–42.

    Article  CAS  PubMed  Google Scholar 

  4. Krishnamurthy R, Madurawe RD, Bush KD, Lumpkin JA. Conditions Promoting Metal-Catalyzed Oxidations during Immobilized Cu-Iminodiacetic Acid Metal Affinity-Chromatography. Biotechnol Prog. 1995;11:643–50.

    Article  CAS  Google Scholar 

  5. Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: Structure and degradation pathways. J Pharm Sci. 2008;97:2924–35.

    Article  CAS  PubMed  Google Scholar 

  6. Takenawa T, Yokota A, Oda M, Takahashi H, Iwakura M. Protein oxidation during long storage: identification of the oxidation sites in dihydrofolate reductase from Escherichia coli through LC-MS and fragment studies. J Biochem. 2009;145:517–23.

    Article  CAS  PubMed  Google Scholar 

  7. Schöneich C, Barrón LB. Posttranslational Oxidative Modifications of Proteins. Encycl. of Anal. Chem. 2006.

  8. Kerwin BA, Remmele Jr RL. Protect from light: photodegradation and protein biologics. J Pharm Sci. 2007;96:1468–79.

    Article  CAS  PubMed  Google Scholar 

  9. Torosantucci R, Mozziconacci O, Sharov V, Schöneich C, Jiskoot W. Chemical modifications in aggregates of recombinant human insulin induced by metal-catalyzed oxidation: covalent cross-linking via michael addition to tyrosine oxidation products. Pharm Res. 2012;29:2276–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Torosantucci R, Kükrer B, Mero A, Van Winsen M, Tantipolphan R, Jiskoot W. Plain and mono-pegylated recombinant human insulin exhibit similar stress-induced aggregation profiles. J Pharm Sci. 2011;100:2574–85.

    Article  CAS  PubMed  Google Scholar 

  11. Waterman KC, Adami RC, Alsante KM, Hong J, Landis MS, Lombardo F, et al. Stabilization of pharmaceuticals to oxidative degradation. Pharm Dev Technol. 2002;7:1–32.

    Google Scholar 

  12. Li S, Schöneich C, Borchardt RT. Chemical instability of protein pharmaceuticals: Mechanisms of oxidation and strategies for stabilization. Biotechnol Bioeng. 1995;48:490–500.

    Article  CAS  PubMed  Google Scholar 

  13. Stadtman ER, Berlett BS. Fenton chemistry.Amino acid oxidation. J Biol Chem. 1991;266:17201–11.

    CAS  PubMed  Google Scholar 

  14. Stadtman ER. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med. 1990;9:315–25.

    Article  CAS  PubMed  Google Scholar 

  15. Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem. 1993;62:797–821.

    Article  CAS  PubMed  Google Scholar 

  16. Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703:93–109.

    Article  CAS  PubMed  Google Scholar 

  17. Barelli S, Canellini G, Thadikkaran L, Crettaz D, Quadroni M, Rossier JS, et al. Oxidation of proteins: Basic principles and perspectives for blood proteomics. Proteomics Clin Appl. 2008;2:142–57.

    Google Scholar 

  18. Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev. 2000;32:307–26.

    Article  CAS  PubMed  Google Scholar 

  19. Cleland JL, Powell MF, Shire SJ. The Development of Stable Protein Formulations - a Close Look at Protein Aggregation, Deamidation, and Oxidation. Crit Rev Ther Drug Carrier Syst. 1993;10:307–77.

    CAS  PubMed  Google Scholar 

  20. Kamionka M. Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol. 2011;12:268–74.

    Google Scholar 

  21. Jayapal KR, Wlaschin KF, Hu WS, Yap MGS. Recombinant protein therapeutics from CHO cells - 20 years and counting. Chem Eng Prog. 2007;103:40–7.

    CAS  Google Scholar 

  22. Miyata T, Takizawa S, van Ypersele de Strihou C. Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: novel therapeutic targets. Am J Physiol Cell Physiol. 2011;300:C226–31.

  23. Row BW, Liu RG, Xu W, Kheirandish L, Gozal D. Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Respir Crit Care Med. 2003;167:1548–53.

    Article  PubMed  Google Scholar 

  24. V. Pialoux, R. Mounier. Hypoxia-induced oxidative stress in health disorders. Oxid Med Cell Longev. 2012;940121.

  25. Lin AA, Miller WM. CHO cell responses to low oxygen: regulation of oxygen consumption and sensitization to oxidative stress. Biotechnol Bioeng. 1992;40:505–16.

    Article  CAS  PubMed  Google Scholar 

  26. Yan BX, Yates Z, Balland A, Kleemann GR. Human IgG1 Hinge Fragmentation as the Result of H2O2-mediated Radical Cleavage. J Biol Chem. 2009;284:35390–402.

    Article  CAS  PubMed  Google Scholar 

  27. Wu Y, Levons J, Narang AS, Raghavan K, Rao VM. Reactive impurities in excipients: profiling, identification and mitigation of drug-excipient incompatibility. AAPS PharmSciTech. 2011;12:1248–63.

    Google Scholar 

  28. Maggio ET. Polysorbates, peroxides, protein aggregation, and immunogenicity:a growing concern. J of Excipients and Food Chem. 2012; 3:45–53.

    Google Scholar 

  29. Miller DM, Buettner GR, Aust SD. Transition-Metals as Catalysts of Autoxidation Reactions. Free Radic Biol Med. 1990;8:95–108.

    Article  CAS  PubMed  Google Scholar 

  30. Wu Y, Levons J, Narang AS, Raghavan K, Rao VM. Reactive impurities in excipients: profiling, identification and mitigation of drug-excipient incompatibility. AAPS PharmSciTech. 2011;12:1248–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Huang X, Atwood CS, Moir RD, Hartshorn MA, Tanzi RE, Bush AI. Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Abeta peptides. J Biol Inorg Chem. 2004;9:954–60.

    Article  CAS  PubMed  Google Scholar 

  32. Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol. 2011;487074.

  33. Romieu I, Castro-Giner F, Kunzli N, Sunyer J. Air pollution, oxidative stress and dietary supplementation: a review. Eur Respir J. 2008;31:179–97.

    Article  CAS  PubMed  Google Scholar 

  34. Buettner GR, Jurkiewicz BA. Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res. 1996;145:532–41.

    Article  CAS  PubMed  Google Scholar 

  35. Ji JA, Zhang BY, Cheng W, Wang YJ. Methionine, Tryptophan, and Histidine Oxidation in a Model Protein, PTH: Mechanisms and Stabilization. J Pharm Sci. 2009;98:4485–500.

    Article  CAS  PubMed  Google Scholar 

  36. Rojas R, Apodaca G. Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol. 2002;3:944–55.

    Article  CAS  PubMed  Google Scholar 

  37. An Z, Forrest G, Moore R, Cukan M, Haytko P, Huang L, et al. IgG2m4, an engineered antibody isotype with reduced Fc function. MAbs. 2009;1:572–9.

    Google Scholar 

  38. Al-Lazikani B, Lesk AM, Chothia C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol. 1997;273:927–48.

    Article  CAS  PubMed  Google Scholar 

  39. Pan H, Chen K, Chu L, Kinderman F, Apostol I, Huang G. Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. Protein Sci. 2009;18:424–33.

    Article  CAS  PubMed  Google Scholar 

  40. Edelman GM, Cunningham BA, Gall WE, Gottlieb PD, Rutishauser U, Waxdal MJ. The covalent structure of an entire gammaG immunoglobulin molecule. Proc Natl Acad Sci USA. 1969;63:78–85.

    Article  CAS  PubMed  Google Scholar 

  41. Rutishauser U, Cunningham BA, Bennett C, Konigsberg WH, Edelman GM. Amino acid sequence of the Fc region of a human gamma G-immunoglobulin. Proc Natl Acad Sci USA. 1968;61:1414–21.

    Article  CAS  PubMed  Google Scholar 

  42. van Loghem E. Allotypic markers. Monogr Allergy. 1986;19:40–51.

    PubMed  Google Scholar 

  43. Khor HK, Jacoby ME, Squier TC, Chu GC, Chelius D. Identification of methionine sulfoxide diastereomers in immunoglobulin gamma antibodies using methionine sulfoxide reductase enzymes. MAbs. 2010;2:299–308.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Keck RG. The use of t-butyl hydroperoxide as a probe for methionine oxidation in proteins. Anal Biochem. 1996;236:56–62.

    Article  CAS  PubMed  Google Scholar 

  45. Qi P, Volkin DB, Zhao H, Nedved ML, Hughes R, Bass R, et al. Characterization of the photodegradation of a human IgG1 monoclonal antibody formulated as a high-concentration liquid dosage form. J Pharm Sci. 2009;98:3117–30.

    Google Scholar 

  46. Liu H, Gaza-Bulseco G, Zhou L. Mass spectrometry analysis of photo-induced methionine oxidation of a recombinant human monoclonal antibody. J Am Soc Mass Spectrom. 2009;20:525–8.

    Article  CAS  PubMed  Google Scholar 

  47. Rao PE, Kroon DJ. Orthoclone OKT3. Chemical mechanisms and functional effects of degradation of a therapeutic monoclonal antibody. Pharm Biotechnol. 1993;5:135–58.

    Article  CAS  PubMed  Google Scholar 

  48. Lam XM, Yang JY, Cleland JL. Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. J Pharm Sci. 1997;86:1250–5.

    Article  CAS  PubMed  Google Scholar 

  49. Gaza-Bulseco G, Faldu S, Hurkmans K, Chumsae C, Liu H. Effect of methionine oxidation of a recombinant monoclonal antibody on the binding affinity to protein A and protein G. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;870:55–62.

    Article  CAS  PubMed  Google Scholar 

  50. Bertolotti-Ciarlet A, Wang WR, Lownes R, Pristatsky P, Fang YL, McKelvey T, et al. Impact of methionine oxidation on the binding of human IgG1 to FcRn and Fc gamma receptors. Mol Immunol. 2009;46:1878–82.

    Google Scholar 

  51. Wang W, Vlasak J, Li Y, Pristatsky P, Fang Y, Pittman T, Roman J, Wang Y, Prueksaritanont T, Ionescu R. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol. 2011;48:860–66.

    Google Scholar 

  52. Liu D, Ren D, Huang H, Dankberg J, Rosenfeld R, Cocco MJ, et al. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry. 2008;47:5088–100.

    Google Scholar 

  53. Wang S, Ionescu R, Peekhaus N, Leung JY, Ha S, Vlasak J. Separation of post-translational modifications in monoclonal antibodies by exploiting subtle conformational changes under mildly acidic conditions. J Chromatogr A. 2010;1217:6496–502.

    Article  CAS  PubMed  Google Scholar 

  54. Liu H, Gaza-Bulseco G, **ang T, Chumsae C. Structural effect of deglycosylation and methionine oxidation on a recombinant monoclonal antibody. Mol Immunol. 2008;45:701–8.

    Article  CAS  PubMed  Google Scholar 

  55. Burkitt W, Domann P, O’Connor G. Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry. Protein Sci. 2010;19:826–35.

    Google Scholar 

  56. Houde D, Peng Y, Berkowitz SA, Engen JR. Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics. 2010;9:1716–28.

    Article  CAS  PubMed  Google Scholar 

  57. Filipe V, Jiskoot W, Basmeleh AH, Halim A, Schellekens H, Brinks V. Immunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic mice. MAbs. 2012;4:740–52.

    Google Scholar 

  58. Brinks V, Jiskoot W, Schellekens H. Immunogenicity of Therapeutic Proteins: The Use of Animal Models. Pharm Res. 2011;28:2379–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Johnson R, Jiskoot W. Models for evaluation of relative immunogenic potential of protein particles in biopharmaceutical protein formulations. J Pharm Sci. 2012;101:3586–92.

    Article  CAS  PubMed  Google Scholar 

  60. Brinks V, Weinbuch D, Baker M, Dean Y, Stas P, Kostense S, et al. Preclinical models used for immunogenicity prediction of therapeutic proteins. Pharm Res. 2013;30:1719–28.

    Google Scholar 

  61. Luo Q, Joubert MK, Stevenson R, Ketchem RR, Narhi LO, Wypych J. Chemical modifications in therapeutic protein aggregates generated under different stress conditions. J Biol Chem. 2011;286:25134–44.

    Google Scholar 

  62. Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286:25118–33.

    Article  CAS  PubMed  Google Scholar 

  63. Chaderjian WB, Chin ET, Harris RJ, Etcheverry TM. Effect of copper sulfate on performance of a serum-free CHO cell culture process and the level of free thiol in the recombinant antibody expressed. Biotechnol Prog. 2005;21:550–3.

    Article  CAS  PubMed  Google Scholar 

  64. Hensel M, Steurer R, Fichtl J, Elger C, Wedekind F, Petzold A, Schlothauer T, Molhoj M, Reusch D, Bulau P. Identification of potential sites for tryptophan oxidation in recombinant antibodies using tert-butylhydroperoxide and quantitative LC-MS. PLoS One. 2011;6:e17708.

    Google Scholar 

  65. Wei ZP, Feng JH, Lin HY, Mullapudi S, Bishop E, Tous GI, et al. Identification of a single tryptophan residue as critical for binding activity in a humanized monoclonal antibody against respiratory syncytial virus. Anal Chem. 2007;79:2797–805.

    Google Scholar 

  66. Goetze AM, Liu YD, Arroll T, Chu L, Flynn GC. Rates and impact of human antibody glycation in vivo. Glycobiology. 2012;22:221–34.

    Article  CAS  PubMed  Google Scholar 

  67. Gaudiano MC, Diociaiuti M, Bertocchi P, Valvo L. Effects induced by hydroxyl radicals on salmon calcitonin: a RP-HPLC, CD and TEM study. Biochim Biophys Acta. 2003;1623:33–40.

    Article  CAS  PubMed  Google Scholar 

  68. Tobler PH, Tschopp FA, Dambacher MA, Born W, Fischer JA. Identification and characterization of calcitonin forms in plasma and urine of normal subjects and medullary carcinoma patients. J Clin Endocrinol Metab. 1983;57:749–54.

    Article  CAS  PubMed  Google Scholar 

  69. Neher R, Riniker B, Maier R, Byfield PG, Gudmundsson TV, MacIntyre I. Human calcitonin. Nature. 1968;220:984–6.

    Article  CAS  PubMed  Google Scholar 

  70. Riniker B, Neher R, Maier R, Kahnt FW, Byfield PG, Gudmundsson TV, et al. Human calcitonin. I. Isolation and characterization. Helv Chim Acta. 1968;51:1738–42.

    Google Scholar 

  71. Mulinacci F, Poirier E, Capelle MA, Gurny R, Arvinte T. Enhanced physical stability of human calcitonin after methionine oxidation. Eur J Pharm Biopharm 2011;78:229–38.

    Google Scholar 

  72. Gaudiano MC, Colone M, Bombelli C, Chistolini P, Valvo L, Diociaiuti M. Early stages of salmon calcitonin aggregation: Effect induced by ageing and oxidation processes in water and in the presence of model membranes. Biochimica Et Biophysica Acta-Proteins and Proteomics. 2005;1750:134–45.

    Article  CAS  Google Scholar 

  73. Windisch V, DeLuccia F, Duhau L, Herman F, Mencel JJ, Tang SY, et al. Degradation pathways of salmon calcitonin in aqueous solution. J Pharm Sci. 1997;86:359–64.

    Google Scholar 

  74. Reubsaet JL, Beijnen JH, Bult A, Hop E, Scholten SD, Teeuwsen J, et al. Oxidation of recombinant methionyl human granulocyte colony stimulating factor. J Pharm Biomed Anal. 1998;17:283–9.

    Google Scholar 

  75. Lu HS, Fausset PR, Narhi LO, Horan T, Shinagawa K, Shimamoto G, et al. Chemical modification and site-directed mutagenesis of methionine residues in recombinant human granulocyte colony-stimulating factor: Effect on stability and biological activity. Arch Biochem Biophys. 1999;362:1–11.

    Google Scholar 

  76. Arakawa T, Prestrelski SJ, Narhi LO, Boone TC, Kenney WC. Cysteine 17 of recombinant human granulocyte-colony stimulating factor is partially solvent-exposed. J Protein Chem. 1993;12:525–31.

    Article  CAS  PubMed  Google Scholar 

  77. Raso SW, Abel J, Barnes JM, Maloney KM, Pipes G, Treuheit MJ, et al. Aggregation of granulocyte-colony stimulating factor in vitro involves a conformationally altered monomeric state. Protein Sci. 2005;14:2246–57.

    Google Scholar 

  78. Mulinacci F, Bell SEJ, Capelle MAH, Gurny R, Arvinte T. Oxidized recombinant human growth hormone that maintains conformational integrity. J Pharm Sci. 2011;100:110–22.

    Article  CAS  PubMed  Google Scholar 

  79. Teh LC, Murphy LJ, Huq NL, Surus AS, Friesen HG, Lazarus L, et al. Methionine oxidation in human growth hormone and human chorionic somatomammotropin. Effects on receptor binding and biological activities. J Biol Chem. 1987;262:6472–7.

    Google Scholar 

  80. Mulinacci F, Capelle MA, Gurny R, Drake AF, Arvinte T. Stability of human growth hormone: influence of methionine oxidation on thermal folding. J Pharm Sci. 2011;100:451–463.

    Google Scholar 

  81. Cunningham BC, Wells JA. Comparison of a structural and a functional epitope. J Mol Biol. 1993;234:554–63.

    Article  CAS  PubMed  Google Scholar 

  82. de Vos AM, Ultsch M, Kossiakoff AA. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science. 1992;255:306–12.

    Article  PubMed  Google Scholar 

  83. Hepner F, Cszasar E, Roitinger E, Lubec G. Mass spectrometrical analysis of recombinant human growth hormone (Genotropin(R)) reveals amino acid substitutions in 2% of the expressed protein. Proteome Sci. 2005;3:1.

    Article  PubMed Central  PubMed  Google Scholar 

  84. D. Steinmann, J. A. Ji, Y. J. Wang, C. Schöneich. Oxidation of human growth hormone by oxygen-centered radicals: formation of Leu-101 hydroperoxide and Tyr-103 oxidation products. Mol Pharm. 9:803–814.

  85. Chang SH, Teshima GM, Milby T, GilleceCastro B, CanovaDavis E. Metal-catalyzed photooxidation of histidine in human growth hormone. Anal Biochem. 1997;244:221–7.

    Article  CAS  PubMed  Google Scholar 

  86. Hovorka SW, Hong J, Cleland JL, Schöneich C. Metal-catalyzed oxidation of human growth hormone: modulation by solvent-induced changes of protein conformation. J Pharm Sci. 2001;90:58–69.

    Article  CAS  PubMed  Google Scholar 

  87. Zhao F, Ghezzo-Schöneich E, Aced GI, Hong J, Milby T, Schöneich C. Metal-catalyzed oxidation of histidine in human growth hormone. Mechanism, isotope effects, and inhibition by a mild denaturing alcohol. J Biol Chem. 1997;272:9019–29.

    Article  CAS  PubMed  Google Scholar 

  88. Sanger F. Fractionation of oxidized insulin. Biochem J. 1949;44:126–8.

    CAS  PubMed  Google Scholar 

  89. Costantino HR, Langer R, Klibanov AM. Moisture-Induced Aggregation of Lyophilized Insulin. Pharm Res. 1994;11:21–9.

    Article  CAS  PubMed  Google Scholar 

  90. Torosantucci R, Weinbuch D, Klem R, Jiskoot W. Triethylenetetramine prevents insulin aggregation and fragmentation during copper catalyzed oxidation. Eur J Pharm Biopharm. 2013;84:464–71.

    Article  CAS  PubMed  Google Scholar 

  91. Hovorka SW, Biesiada H, Williams TD, Huhmer A, Schöneich C. High sensitivity of Zn2+ insulin to metal-catalyzed oxidation: detection of 2-oxo-histidine by tandem mass spectrometry. Pharm Res. 2002;19:530–7.

    Article  CAS  PubMed  Google Scholar 

  92. Sadineni V, Schöneich C. Selective oxidation of Zn2+ − Insulin catalyzed by Cu2+. J Pharm Sci. 2007;96:1844–7.

    Article  CAS  PubMed  Google Scholar 

  93. Tantipolphan R, Romeijn S, den Engelsman J, Torosantucci R, Rasmussen T, Jiskoot W. Elution behavior of insulin on high-performance size exclusion chromatography at neutral pH. J Pharm Biomed Anal. 2010;52:195–202.

    Article  CAS  PubMed  Google Scholar 

  94. Jonassen I, Havelund S, Hoeg-Jensen T, Steensgaard DB, Wahlund PO, Ribel U. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm Res. 2012;29:2104–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Maritim AC, Sanders RA, Watkins 3rd JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17:24–38.

    Article  CAS  PubMed  Google Scholar 

  96. Hunter SJ, Boyd AC, O’Harte FP, McKillop AM, Wiggam MI, Mooney MH, et al. Demonstration of glycated insulin in human diabetic plasma and decreased biological activity assessed by euglycemic-hyperinsulinemic clamp technique in humans. Diabetes. 2003;52:492–8.

    Google Scholar 

  97. Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999;344(Pt 1):109–16.

    Article  CAS  PubMed  Google Scholar 

  98. Jia X, Olson DJ, Ross AR, Wu L. Structural and functional changes in human insulin induced by methylglyoxal. FASEB J. 2006;20:1555–7.

    Article  CAS  PubMed  Google Scholar 

  99. Pillon NJ, Vella RE, Souleere L, Becchi M, Lagarde M, Soulage CO. Structural and functional changes in human insulin induced by the lipid peroxidation byproducts 4-hydroxy-2-nonenal and 4-hydroxy-2-hexenal. Chem Res Toxicol. 2011;24:752–62.

    Article  CAS  PubMed  Google Scholar 

  100. Cheng RZ, Kawakishi S. Site-specific oxidation of histidine residues in glycated insulin mediated by Cu2+. Eur J Biochem. 1994;223:759–64.

    Google Scholar 

  101. Guedes S, Vitorino R, Domingues MRM, Amado F, Domingues P. Oxidative modifications in glycated insulin. Anal Bioanal Chem. 2010;397:1985–95.

    Article  CAS  PubMed  Google Scholar 

  102. Gliemann J, Gammeltoft S. The biological activity and the binding affinity of modified insulins determined on isolated rat fat cells. Diabetologia. 1974;10:105–13.

    Article  CAS  PubMed  Google Scholar 

  103. Montes-Cortes DH, Hicks JJ, Ceballos-Reyes GM, Garcia-Sanchez JR, Medina-Navarro R, Olivares-Corichi IM. Chemical and functional changes of human insulin by in vitro incubation with blood from diabetic patients in oxidative stress. Metabolism. 2010;59:935–42.

    Google Scholar 

  104. Olivares-Corichi IM, Ceballos G, Medina-Santillan R, Medina-Navarro R, Guzman-Grenfell AM, Hicks JJ. Oxidation by reactive oxygen species (ROS) alters the structure of human insulin and decreases the insulin-dependent D-glucose-C14 utilization by human adipose tissue. Front Biosci. 2005;10:3127–31.

    Article  CAS  PubMed  Google Scholar 

  105. Sharma VK, Kalonia DS. Polyethylene glycol-induced precipitation of interferon alpha-2a followed by vacuum drying: development of a novel process for obtaining a dry, stable powder. AAPS PharmSci. 2004;6:E4.

    Article  PubMed  Google Scholar 

  106. Larocque L, Bliu A, Xu R, Diress A, Wang J, Lin R, et al. Bioactivity determination of native and variant forms of therapeutic interferons. J Biomed Biotechnol. 2011;2011:174615.

  107. Ryff JC. Clinical investigation of the immunogenicity of interferon-alpha 2a. J Interferon Cytokine Res. 1997;17 Suppl 1:S29–33.

    CAS  PubMed  Google Scholar 

  108. Hochuli E. Interferon immunogenicity: technical evaluation of interferon-alpha 2a. J Interferon Cytokine Res. 1997;17 Suppl 1:S15–21.

    CAS  PubMed  Google Scholar 

  109. Cindric M, Galic N, Vuletic M, Klaric M, Drevenkar V. Evaluation of recombinant human interferon alpha-2b structure and stability by in-gel tryptic digestion, H/D exchange and mass spectrometry. J Pharm Biomed Anal. 2006;40:781–7.

    Article  CAS  PubMed  Google Scholar 

  110. Praveen GL, Kumar RB, Shen J, Gaspar K, Docherty J, Foldvari M. Stabilization of Interferon alpha-2b in a Topical Cream. Pharm Technol. 2009;33:80–6.

    Google Scholar 

  111. Gitlin G, Tsarbopoulos A, Patel ST, Sydor W, Pramanik BN, Jacobs S, et al. Isolation and characterization of a monomethioninesulfoxide variant of interferon alpha-2b. Pharm Res. 1996;13:762–9.

    Google Scholar 

  112. Hermeling S, Aranha L, Damen JMA, Slijper M, Schellekens H, Crommelin DJA, et al. Structural characterization and immunogenicity in wild-type and immune tolerant mice of degraded recombinant human interferon alpha2b. Pharm Res. 2005;22:1997–2006.

    Google Scholar 

  113. Davis ME, Maxwell CV, Brown DC, de Rodas BZ, Johnson ZB, Kegley EB, et al. Effect of dietary mannan oligosaccharides and(or) pharmacological additions of copper sulfate on growth performance and immunocompetence of weanling and growing/finishing pigs. J Anim Sci. 2002;80:2887–94.

    Google Scholar 

  114. Karpusas M, Nolte M, Benton CB, Meier W, Lipscomb WN, Goelz S. The crystal structure of human interferon beta at 2.2-angstrom resolution. Proc Natl Acad Sci USA. 1997;94:11813–8.

    Article  CAS  PubMed  Google Scholar 

  115. Mark DF, Lu SD, Creasey AA, Yamamoto R, Lin LS. Site-specific mutagenesis of the human fibroblast interferon gene. Proc Natl Acad Sci USA. 1984;81:5662–6.

    Article  CAS  PubMed  Google Scholar 

  116. Runkel L, Meier W, Pepinsky RB, Karpusas M, Whitty A, Kimball K, et al. Structural and functional differences between glycosylated and non-glycosylated forms of human interferon-beta (IFN-beta). Pharm Res. 1998;15:641–9.

    Google Scholar 

  117. van Beers MM, Sauerborn M, Gilli F, Brinks V, Schellekens H, Jiskoot W. Oxidized and aggregated recombinant human interferon beta is immunogenic in human interferon beta transgenic mice. Pharm Res. 2011;28:2393–402.

    Article  PubMed Central  PubMed  Google Scholar 

  118. Torosantucci R, Sharov VS, van Beers M, Brinks V, Schöneich C, Jiskoot W. Identification of oxidation sites and covalent cross-links in metal catalyzed oxidized interferon beta-1a: potential implications for protein aggregation and immunogenicity. Mol Pharm. 2013;10:2311–22.

    Google Scholar 

  119. Avanti C, Amorij JP, Setyaningsih D, Hawe A, Jiskoot W, Visser J, et al. A new strategy to stabilize oxytocin in aqueous solutions: I. The effects of divalent metal ions and citrate buffer. AAPS Journal. 2011;13:284–90.

    Article  CAS  PubMed  Google Scholar 

  120. Hawe A, Poole R, Romeijn S, Kasper P, van der Heijden R, Jiskoot W. Towards heat-stable oxytocin formulations: analysis of degradation kinetics and identification of degradation products. Pharm Res. 2009;26:1679–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Rosei RCMA, Blarzino C, Foppoli C, Mosca L. The oxidation of oxytocin and vasopressin by peroxidase/H2O2 system. Amino Acids. 1995;8:385–91.

    Article  CAS  PubMed  Google Scholar 

  122. Kato Y, Kitamoto N, Kawai Y, Osawa T. The hydrogen peroxide/copper ion system, but not other metal-catalyzed oxidation systems, produces protein-bound dityrosine. Free Radic Biol Med. 2001;31:624–32.

    Article  CAS  PubMed  Google Scholar 

  123. Hocher B, Armbruster FP, Stoeva S, Reichetzeder C, Gron HJ, Lieker I, Khadzhynov D, Slowinski T, Roth HJ. Measuring parathyroid hormone (PTH) in patients with oxidative stress--do we need a fourth generation parathyroid hormone assay? PLoS One. 2012;7:e40242.

    Google Scholar 

  124. Kamberi M, Kim YJ, Jun B, Riley CM. The effects of sucrose on stability of human brain natriuretic peptide [hBNP (1–32)] and human parathyroid hormone [hPTH (1–34)]. J Pept Res. 2005;66:348–56.

    Article  CAS  PubMed  Google Scholar 

  125. Barden JA, Kemp BE. NMR solution structure of human parathyroid hormone(1–34). Biochemistry. 1993;32:7126–32.

    Article  CAS  PubMed  Google Scholar 

  126. Zull JE, Smith SK, Wiltshire R. Effect of methionine oxidation and deletion of amino-terminal residues on the conformation of parathyroid hormone. Circular dichroism studies. J Biol Chem. 1990;265:5671–6.

    CAS  PubMed  Google Scholar 

  127. Nabuchi Y, Fujiwara E, Ueno K, Kuboniwa H, Asoh Y, Ushio H. Oxidation of recombinant human parathyroid hormone: Effect of oxidized position on the biological activity. Pharm Res. 1995;12:2049–52.

    Article  CAS  PubMed  Google Scholar 

  128. Mozziconacci O, Ji JA, Wang YJ, Schöneich C. Metal-catalyzed oxidation of protein methionine residues in human parathyroid hormone (1–34): formation of homocysteine and a novel methionine-dependent hydrolysis reaction. Mol Pharm. 2013;10:739–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Frelinger 3rd AL, Zull JE. Oxidized forms of parathyroid hormone with biological activity. Separation and characterization of hormone forms oxidized at methionine 8 and methionine 18. J Biol Chem. 1984;259:5507–13.

    CAS  PubMed  Google Scholar 

  130. Woodhead JS, O’Riordan JL, Keutmann HT, Stoltz ML, Dawson BF, Niall HD, et al. Isolation and chemical properties of porcine parathyroid hormone. Biochemistry. 1971;10:2787–92.

    Google Scholar 

  131. Caulfield MP, McKee RL, Goldman ME, Duong LT, Fisher JE, Gay CT, et al. The bovine renal parathyroid hormone (PTH) receptor has equal affinity for two different amino acid sequences: the receptor binding domains of PTH and PTH-related protein are located within the 14–34 region. Endocrinology. 1990;127:83–7.

    Google Scholar 

  132. Frelinger 3rd AL, Zull JE. The role of the methionine residues in the structure and function of parathyroid hormone. Arch Biochem Biophys. 1986;244:641–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Jiskoot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torosantucci, R., Schöneich, C. & Jiskoot, W. Oxidation of Therapeutic Proteins and Peptides: Structural and Biological Consequences. Pharm Res 31, 541–553 (2014). https://doi.org/10.1007/s11095-013-1199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1199-9

KEY WORDS

Navigation