Flavonoid Dietetics: Mechanisms and Emerging Roles of Plant Nutraceuticals

  • Chapter
  • First Online:
Pigments in Fruits and Vegetables

Abstract

Flavonoids, naturally occurring polyphenolic compounds broadly found in fruits and vegetables, correspond to a large class of food constituents, emerging as valuable nutraceuticals. Anthocyanins, a subclass of flavonoids that provides bright color to fruits, flowers, and leaves, also have extensive nutraceutical activities. Initial interest in flavonoids focused on their possible health benefits as dietary antioxidants in the prevention and treatment of conditions, such as cardiovascular diseases. Flavonoids, including anthocyanins, have shown anti-inflammatory, antiproliferative, antiviral, anti-diabetes, anticarcinogenic, cardioprotective, neuroprotective, and anti-microbial activities in several model systems. Recent clinical and epidemiological studies suggest promising potential beneficial effects of flavonoid dietary intervention in ovarian cancer, obesity, and cardiovascular diseases. Evidences of the beneficial effect of flavonoids as nutraceuticals remain promising, but insufficient. A better understanding of their molecular mechanisms of action, metabolism, absorption, and bioavailability will help define their biological activities and utilization. In this chapter, we discuss the recent advances on the bioavailability, mechanisms of action, and dietary effects of flavonoids and anthocyanins and the role of functional foods in the prevention and treatment of various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DeFelice SL Nutraceuticals: opportunities in an emerging market. Scrip Mag. Sept 1992

    Google Scholar 

  2. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    CAS  PubMed  Google Scholar 

  3. Ghosh D, Konishi T (2007) Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 16:200–208

    CAS  PubMed  Google Scholar 

  4. Luo H, Jiang B, Li B, Li Z, Jiang BH, Chen YC (2012) Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability. Int J Nanomedicine 7:3951–3959

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Trudel D, Labbe DP, Bairati I, Fradet V, Bazinet L, Tetu B (2012) Green tea for ovarian cancer prevention and treatment: a systematic review of the in vitro, in vivo and epidemiological studies. Gynecol Oncol 126:491–488

    CAS  PubMed  Google Scholar 

  6. Garcia-Lafuente A, Guillamon E, Villares A, Rostagno MA, Martinez JA (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 58:537–552

    CAS  PubMed  Google Scholar 

  7. Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK (2006) Antidiabetic agents from medicinal plants. Curr Med Chem 13:1203–1218

    CAS  PubMed  Google Scholar 

  8. Gorinstein S, Caspi A, Libman I, Katrich E, Lerner HT, Trakhtenberg S (2004) Fresh israeli jaffa sweetie juice consumption improves lipid metabolism and increases antioxidant capacity in hypercholesterolemic patients suffering from coronary artery disease: studies in vitro and in humans and positive changes in albumin and fibrinogen fractions. J Agric Food Chem 52:5215–5222

    CAS  PubMed  Google Scholar 

  9. Harborne JB, William CA (1975) Flavone and flavonol glycoside. In: Harborne JB, Mabry TJ., Mabry H (eds) The flavonoids. Chapman and Hall, London, pp 376–441

    Google Scholar 

  10. Dragsted LO, Strube M, Larsen JC (1993) Cancer-protective factors in fruits and vegetables: biochemical and biological background. Pharmacol Toxicol 72(Suppl 1):116–135

    PubMed  Google Scholar 

  11. Harborne JB (1986) Nature, distribution and function of plant flavonoids. Prog Clin Biol Res 213:15–24

    CAS  PubMed  Google Scholar 

  12. Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133:3248S–3254S

    CAS  PubMed  Google Scholar 

  13. Lotito SB, Frei B (2006) Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med 41:1727–1746

    CAS  PubMed  Google Scholar 

  14. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2:270–278

    PubMed Central  PubMed  Google Scholar 

  15. Arts IC, Hollman PC, Feskens EJ, Bueno de Mesquita HB, Kromhout D (2001) Catechin intake and associated dietary and lifestyle factors in a representative sample of Dutch men and women. Eur J Clin Nutr 55:76–81

    CAS  PubMed  Google Scholar 

  16. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  PubMed  Google Scholar 

  17. Crozier IA, Lean M, McDonald M, Black C (1997) Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. J Agric Food Chem 45:590–595

    CAS  Google Scholar 

  18. Stafford HA (1990) Flavonoid metabolism. CRC Press, Boca Raton

    Google Scholar 

  19. Delgado-Vargas F, Jimenez AR, Paredes-Lopez O (2000) Natural pigments: carotenoids, anthocyanins, and betalains–characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40:173–289

    CAS  PubMed  Google Scholar 

  20. Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    CAS  PubMed  Google Scholar 

  21. Huang WY, Zhang HC, Liu WX, Li CY (2012) Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nan**g. J Zhejiang Univ Sci B 13:94–102

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Dixon RA, **e DY, Sharma SB (2005) Proanthocyanidins–a final frontier in flavonoid research? New Phytol 165:9–28

    CAS  PubMed  Google Scholar 

  23. **e DY, Dixon RA (2005) Proanthocyanidin biosynthesis–still more questions than answers? Phytochemistry 66:2127–2144

    CAS  PubMed  Google Scholar 

  24. Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids – a gold mine for metabolic engineering. Trends Plant Sci 4:394–400

    PubMed  Google Scholar 

  25. Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    CAS  PubMed  Google Scholar 

  26. Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217

    Google Scholar 

  27. Winkel BSJ (2006) The biosynthesis of flavonoids. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 71–95

    Google Scholar 

  28. Winkel-Shirley B (2001) It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism. Plant Physiol 127:1399–1404

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    CAS  PubMed  Google Scholar 

  31. Nakajima J, Tanaka Y, Yamazaki M, Saito K (2001) Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J Biol Chem 276:25797–25803

    CAS  PubMed  Google Scholar 

  32. Brazier-Hicks M, Evans KM, Gershater MC, Puschmann H, Steel PG, Edwards R (2009) The C-glycosylation of flavonoids in cereals. J Biol Chem 284:17926–17934

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N (2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part II: reconstruction of multienzyme pathways in plants and microbes. Biotechnol J 2:1235–1249

    CAS  PubMed  Google Scholar 

  34. van het Hof KH, Wiseman SA, Yang CS, Tijburg LB (1999) Plasma and lipoprotein levels of tea catechins following repeated tea consumption. Proc Soc Exp Biol Med 220:203–209

    CAS  PubMed  Google Scholar 

  35. Young JF, Nielsen SE, Haraldsdóttir J, Daneshvar B, Lauridsen ST, Knuthsen P et al (1999) Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. Am J Clin Nutr 69:87–94

    CAS  PubMed  Google Scholar 

  36. Vitaglione P, Sforza S, Galaverna G, Ghidini C, Caporaso N, Vescovi PP et al (2005) Bioavailability of trans-resveratrol from red wine in humans. Mol Nutr Food Res 49:495–504.

    CAS  PubMed  Google Scholar 

  37. Erlund I, Silaste ML, Alfthan G, Rantala M, Kesaniemi YA, Aro A (2002) Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. Eur J Clin Nutr 56:891–898

    CAS  PubMed  Google Scholar 

  38. Spencer JP, Kuhnle GG, Williams RJ, Rice-Evans C (2003) Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. Biochem J 372:173–181

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Felgines C, Talavera S, Texier O, Gil-Izquierdo A, Lamaison JL, Remesy C (2005) Blackberry anthocyanins are mainly recovered from urine as methylated and glucuronidated conjugates in humans. J Agric Food Chem 53:7721–7727

    CAS  PubMed  Google Scholar 

  40. Talavera S, Felgines C, Texier O, Besson C, Gil-Izquierdo A, Lamaison JL et al (2005) Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J Agric Food Chem 53:3902–3908

    CAS  PubMed  Google Scholar 

  41. Kalt W, Blumberg JB, McDonald JE Vinqvist-Tymchuk MR, Fillmore SA, Graf BA et al (2008) Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J Agric Food Chem 56:705–712

    CAS  PubMed  Google Scholar 

  42. Garcea G, Berry DP, Jones DJ, Singh R, Dennison AR, Farmer PB et al (2005) Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev 14:120–125

    CAS  PubMed  Google Scholar 

  43. Maubach J, Bracke ME, Heyerick A, Depypere HT, Serreyn RF, Mareel MM et al (2003) Quantitation of soy-derived phytoestrogens in human breast tissue and biological fluids by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 784:137–144

    CAS  PubMed  Google Scholar 

  44. D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R (2007) Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 43:348–361

    PubMed  Google Scholar 

  45. Wu X, Cao G, Prior RL (2002) Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J Nutr 132:1865–1871

    CAS  PubMed  Google Scholar 

  46. Lee MJ, Maliakal P, Chen L, Meng X, Bondoc FY, Prabhu S et al (2002) Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomarkers Prev 11:1025–1032

    CAS  PubMed  Google Scholar 

  47. Meng X, Lee MJ, Li C, Sheng S, Zhu N, Sang S et al (2001) Formation and identification of 4′-O-methyl-(−)-epigallocatechin in humans. Drug Metab Dispos 29:789–793

    CAS  PubMed  Google Scholar 

  48. Piskula MK, Terao J (1998) Accumulation of (−)-epicatechin metabolites in rat plasma after oral administration and distribution of conjugation enzymes in rat tissues. J Nutr 128:1172–1178

    CAS  PubMed  Google Scholar 

  49. Falany CN (1997) Enzymology of human cytosolic sulfotransferases. FASEB J 11:206–216

    CAS  PubMed  Google Scholar 

  50. Spencer JP, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C (1998) The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett 458:224–230

    Google Scholar 

  51. Boersma MG, van der WH, Bogaards J Boeren S, Vervoort J, Cnubben NH et al (2002) Regioselectivity of phase II metabolism of luteolin and quercetin by UDP-glucuronosyl transferases. Chem Res Toxicol 15:662–670

    CAS  PubMed  Google Scholar 

  52. Shimoi K, Saka N, Nozawa R, Sato M, Amano I, Nakayama T et al (2001) Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation. Drug Metab Dispos 29:1521–1524

    CAS  PubMed  Google Scholar 

  53. Atkinson C, Frankenfeld CL, Lampe JW (2005) Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med (Maywood) 230:155–170

    CAS  Google Scholar 

  54. Franke AA, Custer LJ, Hundahl SA (2004) Determinants for urinary and plasma isoflavones in humans after soy intake. Nutr Cancer 50:141–154

    CAS  PubMed  Google Scholar 

  55. Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C (2002) Quercetin, but not its glycosides, is absorbed from the rat stomach. J Agric Food Chem 50:618–621

    CAS  PubMed  Google Scholar 

  56. Piskula MK, Yamakoshi J, Iwai Y (1999) Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Lett 447:287–291

    CAS  PubMed  Google Scholar 

  57. Tian Q, Giusti MM, Stoner GD, Schwartz SJ (2006) Urinary excretion of black raspberry (Rubus occidentalis) anthocyanins and their metabolites. J Agric Food Chem 54:1467–1472

    CAS  PubMed  Google Scholar 

  58. Fito M, Guxens M, Corella D, Saez G, Estruch R, de la Torre R et al (2007) Effect of a traditional Mediterranean diet on lipoprotein oxidation: a randomized controlled trial. Arch Intern Med 167:1195–1203

    PubMed  Google Scholar 

  59. Marrugat J, Covas MI, Fito M, Schröder H, Miro-Casas E, Gimeno E et al (2004) Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation–a randomized controlled trial. Eur J Nutr 43:140–147

    CAS  PubMed  Google Scholar 

  60. Keppler K, Humpf HU (2005) Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg Med Chem 13:5195–5205

    CAS  PubMed  Google Scholar 

  61. Scalbert A, Deprez S, Mila I, Albrecht AM, Huneau JF, Rabot S (2002) Proanthocyanidins and human health: systemic effects and local effects in the gut. Biofactors 13:115–120

    Google Scholar 

  62. Plumb GW, Pascual-Teresa S, Santos-Buelga C, Cheynier V, Williamson G (1998) Antioxidant properties of catechins and proanthocyanidins: effect of polymerisation, galloylation and glycosylation. Free Radic Res 29:351–358

    CAS  PubMed  Google Scholar 

  63. He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    CAS  PubMed  Google Scholar 

  64. Tulipani S, Romandini S, Busco F, Bompadre S, Mezzetti B, Battino M (2009) Ascorbate, not urate, modulates the plasma antioxidant capacity after strawberry intake. Food Chemistry 117:181–188

    CAS  Google Scholar 

  65. Mazza G, Kay CD, Cottrell T, Holub BJ (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem 50:7731–7737

    CAS  PubMed  Google Scholar 

  66. Miller MG, Shukitt-Hale B (2012) Berry fruit enhances beneficial signaling in the brain. J Agric Food Chem. [Epub ahead of print]

    Google Scholar 

  67. Bub A, Watzl B, Heeb D, Rechkemmer G, Briviba K (2001) Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur J Nutr 40:113–120

    CAS  PubMed  Google Scholar 

  68. Ichiyanagi T, Shida Y, Rahman MM et al (2005) Metabolic pathway of cyanidin 3-O-beta-D-glucopyranoside in rats. J Agric Food Chem 53:145–150

    CAS  PubMed  Google Scholar 

  69. Wright EM, Loo DD, Hirayama AB (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794

    CAS  PubMed  Google Scholar 

  70. Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR et al (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett 436:71–75

    CAS  PubMed  Google Scholar 

  71. Booth AN, Deeds F, Jones FT, Murray CW (1956) The metabolic fate of rutin and quercetin in the animal body. J Biol Chem 223:251–257

    CAS  PubMed  Google Scholar 

  72. Baba S, Furuta T, Horie M, Nakagawa H (1981) Studies on drug metabolism by use of isotopes XXVI: determination of urinary metabolites of rutin in humans. J Pharm Sci 70:780–782

    CAS  PubMed  Google Scholar 

  73. Kuhnau J (1976) The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet 24:117–191

    CAS  PubMed  Google Scholar 

  74. Hostetler G, Riedl K, Cardenas H, Diosa-Toro M, Arango D, Schwartz S et al (2012) Flavone deglycosylation increases their anti-inflammatory activity and absorption. Mol Nutr Food Res 56:558–569

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Day AJ, Williamson G (2001) Biomarkers for exposure to dietary flavonoids: a review of the current evidence for identification of quercetin glycosides in plasma. Br J Nutr 86 (Suppl 1):S105–S110

    CAS  PubMed  Google Scholar 

  76. Natsume M, Osakabe N, Oyama M, Sasaki M, Baba S, Nakamura Y et al (2003) Structures of (−)-epicatechin glucuronide identified from plasma and urine after oral ingestion of (−)-epicatechin: differences between human and rat. Free Radic Biol Med 34:840–849

    CAS  PubMed  Google Scholar 

  77. Zhang Y, Hendrich S, Murphy PA (2003) Glucuronides are the main isoflavone metabolites in women. J Nutr 133:399–404.

    CAS  PubMed  Google Scholar 

  78. de Groot H (1994) Reactive oxygen species in tissue injury. Hepatogastroenterology 41:328–332

    PubMed  Google Scholar 

  79. Grace PA (1994) Ischaemia-reperfusion injury. Br J Surg 81:637–647

    CAS  PubMed  Google Scholar 

  80. Halliwell B (1995) How to characterize an antioxidant: an update. Biochem Soc Symp 61:73–101

    CAS  PubMed  Google Scholar 

  81. Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933

    CAS  PubMed  Google Scholar 

  82. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    CAS  PubMed  Google Scholar 

  83. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    CAS  PubMed  Google Scholar 

  84. Guo JJ, Hsieh HY, Hu CH (2009) Chain-breaking activity of carotenes in lipid peroxidation: a theoretical study. J Phys Chem B 113:15699–15708

    CAS  PubMed  Google Scholar 

  85. Du Y, Guo H, Lou H (2007) Grape seed polyphenols protect cardiac cells from apoptosis via induction of endogenous antioxidant enzymes. J Agric Food Chem 55:1695–1701

    CAS  PubMed  Google Scholar 

  86. Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B et al (1998) Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 61:71–6

    CAS  PubMed  Google Scholar 

  87. Shoskes DA (1998) Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: a new class of renoprotective agents. Transplantation 66:147–152

    CAS  PubMed  Google Scholar 

  88. Chang WS, Lee YJ, Lu FJ, Chiang HC (1993) Inhibitory effects of flavonoids on xanthine oxidase. Anticancer Res 13:2165–2170

    CAS  PubMed  Google Scholar 

  89. Iio M, Ono Y, Kai S, Fukumoto M (1986) Effects of flavonoids on xanthine oxidation as well as on cytochrome c reduction by milk xanthine oxidase. J Nutr Sci.Vitaminol (Tokyo) 32:635–642

    CAS  Google Scholar 

  90. Castelluccio C, Paganga G, Melikian N, Bolwell GP, Pridham J, Sampson J et al (1995) Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett 368:188–192

    CAS  PubMed  Google Scholar 

  91. Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C (1995) Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322:339–346

    CAS  PubMed  Google Scholar 

  92. Boyle SP, Dobson VL, Duthie SJ, Kyle JA, Collins AR (2000) Absorption and DNA protective effects of flavonoid glycosides from an onion meal. Eur J Nutr 39:213–223

    CAS  PubMed  Google Scholar 

  93. Kapiotis S, Hermann M, Held I, Seelos C, Ehringer H, Gmeiner BM (1997) Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler Thromb Vasc Biol 17:2868–2874

    CAS  PubMed  Google Scholar 

  94. Murakami A, Nakamura Y, Ohto Y, Yano M, Koshiba T, Koshimizu K et al (2000) Suppressive effects of citrus fruits on free radical generation and nobiletin, an anti-inflammatory polymethoxyflavonoid. Biofactors 12:187–192

    CAS  PubMed  Google Scholar 

  95. Murakami A, Nakamura Y, Torikai K, Tanaka T, Koshiba T, Koshimizu K et al (2000) Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res 60:5059–5066

    CAS  PubMed  Google Scholar 

  96. Gordon MH, Roedig-Penman A (1998) Antioxidant activity of quercetin and myricetin in liposomes. Chem Phys Lipids 97:79–85

    CAS  PubMed  Google Scholar 

  97. Shoskes DA (1998) Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: a new class of renoprotective agents. Transplantation 66:147–152

    CAS  PubMed  Google Scholar 

  98. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    CAS  PubMed  Google Scholar 

  99. Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53:75–100

    CAS  PubMed  Google Scholar 

  100. Wang SY, Jiao H (2000) Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J Agric Food Chem 48:5677–5684

    CAS  PubMed  Google Scholar 

  101. Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269:281–290

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Vargo MA, Voss OH, Poustka F, Cardounel AJ, Grotewold E, Doseff AI (2006) Apigenin-induced-apoptosis is mediated by the activation of PKCdelta and caspases in leukemia cells. Biochem Pharmacol 72:681–692

    CAS  PubMed  Google Scholar 

  103. Salvi M, Brunati AM, Clari G, Toninello A (2002) Interaction of genistein with the mitochondrial electron transport chain results in opening of the membrane transition pore. Biochim Biophys Acta 1556:187–196

    CAS  PubMed  Google Scholar 

  104. Shen SC, Ko CH, Tseng SW, Tsai SH, Chen YC (2004) Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production. Toxicol Appl Pharmacol 197:84–95

    CAS  PubMed  Google Scholar 

  105. Murphy A, Peer WA, Taiz L (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211:315–324

    CAS  PubMed  Google Scholar 

  106. Pourcel L, Irani NG, Koo AJK, Bohorquez-Restrepo A, Howe GA, Grotewold E (2013) A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. Plant J 74:383–397

    Google Scholar 

  107. Wingender R, Rohrig H, Horicke C, Wing D, Schell J (1989) Differential regulation of soybean chalcone synthase genes in plant defence, symbiosis and upon environmental stimuli. Mol Gen Genet 218:315–322

    CAS  PubMed  Google Scholar 

  108. Seo S, Sano H, Ohashi Y (1999) Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell 11:289–298

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Hungria M, Joseph CM, Phillips DA (1991) Anthocyanidins and flavonols, major nod gene inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiol 97:751–758

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Novak K, Chovanec P, Skrdleta V, Kropacova M, Lisa L, Nemcova M (2002) Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.). J Exp Bot 53:1735–1745

    CAS  PubMed  Google Scholar 

  111. Yeh KC, Peck MC, Long SR (2002) Luteolin and GroESL modulate in vitro activity of NodD. J Bacteriol 184:525–530

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Spencer JP, Rice-Evans C, Williams RJ (2003) Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem 278:34783–34793

    CAS  PubMed  Google Scholar 

  113. Kobuchi H, Roy S, Sen CK, Nguyen HG, Packer L (1999) Quercetin inhibits inducible ICAM-1 expression in human endothelial cells through the JNK pathway. Am J Physiol 277:C403–C411

    CAS  PubMed  Google Scholar 

  114. Kong AN, Yu R, Chen C, Mandlekar S, Primiano T (2000) Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch Pharm Res 23:1–16

    CAS  PubMed  Google Scholar 

  115. Gonzalez-Mejia ME, Voss OH, Murnan EJ, Doseff AI (2010) Apigenin-induced apoptosis of leukemia cells is mediated by a bimodal and differentially regulated residue-specific phosphorylation of heat-shock protein-27. Cell Death Dis 1:e64

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD et al (2007) Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation. J Immunol 179:7121–7127

    CAS  PubMed  Google Scholar 

  117. Kim JS, Jobin C (2005) The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology 115:375–387

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Schroeter H, Spencer JP, Rice-Evans C, Williams RJ (2001) Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J 358:547–557

    PubMed Central  CAS  PubMed  Google Scholar 

  119. ** J, Wang H, Mueller RA, Norfleet EA, Xu Z (2009) Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3beta and mitochondrial permeability transition pore. Eur J Pharmacol 604:111–116

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Goh SS, Woodman OL, Pepe S, Cao AH, Qin C, Ritchie RH (2007) The red wine antioxidant resveratrol prevents cardiomyocyte injury following ischemia-reperfusion via multiple sites and mechanisms. Antioxid Redox Signal 9:101–113

    CAS  PubMed  Google Scholar 

  121. Gurusamy N, Lekli I, Mukherjee S, Ray D, Ahsan MK, Gherghiceanu M et al (2010) Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 86:103–12

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K et al (2010) Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 299:H18–H24

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Das S, Fraga CG, Das DK (2006) Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaB. Free Radic Res 40:1066–1075

    CAS  PubMed  Google Scholar 

  124. Hung LM, Su MJ, Chen JK (2004) Resveratrol protects myocardial ischemia-reperfusion injury through both NO-dependent and NO-independent mechanisms. Free Radic Biol Med 36:774–781

    CAS  PubMed  Google Scholar 

  125. Oak MH, Bedoui JE, Madeira SV, Chalupsky K, Schini-Kerth VB (2006) Delphinidin and cyanidin inhibit PDGF(AB)-induced VEGF release in vascular smooth muscle cells by preventing activation of p38 MAPK and JNK. Br J Pharmacol 149:283–290

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Vang O, Ahmad N, Baile CA, Baur JA, Brown K, Csiszar A et al (2011) What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE 6:e19881

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Fremont L (2000) Biological effects of resveratrol. Life Sci 66:663–673

    CAS  PubMed  Google Scholar 

  128. Donnelly LE, Newton R, Kennedy GE, Fenwick PS, Leung RH, Ito K et al (2004) Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am J Physiol Lung Cell Mol Physiol 287:L774–L783

    CAS  PubMed  Google Scholar 

  129. Culpitt SV, Rogers DF, Fenwick PS, Shah P, De Matos C, Russell RE et al (2003) Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax 58:942–946

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Noe V, Penuelas S, Lamuela-Raventos RM, Permanyer J, Ciudad CJ, Izquierdo-Pulido M (2004) Epicatechin and a cocoa polyphenolic extract modulate gene expression in human Caco-2 cells. J Nutr 134:2509–2516

    CAS  PubMed  Google Scholar 

  131. Bahia PK, Rattray M, Williams RJ (2008) Dietary flavonoid (-)epicatechin stimulates phosphatidylinositol 3-kinase-dependent anti-oxidant response element activity and up-regulates glutathione in cortical astrocytes. J Neurochem 106:2194–2204

    CAS  PubMed  Google Scholar 

  132. Kioka N, Hosokawa N, Komano T, Hirayoshi K, Nagata K, Ueda K (1992) Quercetin, a bioflavonoid, inhibits the increase of human multidrug resistance gene (MDR1) expression caused by arsenite. FEBS Lett 301:307–309

    CAS  PubMed  Google Scholar 

  133. Johnson VJ, Osuchowski MF, He Q, Sharma RP (2002) Physiological responses to a natural antioxidant flavonoid mixture, silymarin, in BALB/c mice: II. Alterations in thymic differentiation correlate with changes in c-myc gene expression. Planta Med 68:961–965

    CAS  PubMed  Google Scholar 

  134. Diebolt M, Bucher B, Andriantsitohaina R (2001) Wine polyphenols decrease blood pressure, improve NO vasodilatation, and induce gene expression. Hypertension 38:159–165

    CAS  PubMed  Google Scholar 

  135. Lopez-Posadas R, Ballester I, Mascaraque C, Suarez MD, Zarzuelo A, Martinez-Augustin O et al (2010) Flavonoids exert distinct modulatory actions on cyclooxygenase 2 and NF-kappaB in an intestinal epithelial cell line (IEC18). Br J Pharmacol 160:1714–1726

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Nicholson SK, Tucker GA, Brameld JM (2010) Physiological concentrations of dietary polyphenols regulate vascular endothelial cell expression of genes important in cardiovascular health. Br J Nutr 103:1398–1403

    CAS  PubMed  Google Scholar 

  137. Boomgaarden I, Egert S, Rimbach G, Wolffram S, Muller MJ, Doring F (2010) Quercetin supplementation and its effect on human monocyte gene expression profiles in vivo. Br J Nutr 104:336–345

    CAS  PubMed  Google Scholar 

  138. Bub A, Watzl B, Blockhaus M, Briviba K, Liegibel U, Muller H et al (2003) Fruit juice consumption modulates antioxidative status, immune status and DNA damage. J Nutr Biochem 14:90–98

    CAS  PubMed  Google Scholar 

  139. Choi SW, Friso S (2010) Epigenetics: a new bridge between nutrition and health. Adv Nutr 1:8–16

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Chmurzynska A (2010) Fetal programming: link between early nutrition, DNA methylation, and complex diseases. Nutr Rev 68:87–98

    PubMed  Google Scholar 

  141. Mathers JC, Strathdee G, Relton CL (2010) Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet 71:3–39

    PubMed  Google Scholar 

  142. Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030

    CAS  PubMed  Google Scholar 

  143. Arango D, Parihar A, Villamena FA, Wang L, Freitas MA, Grotewold E et al (2012) Apigenin induces DNA damage through the PKCδ-dependent activation of ATM and H2AX causing down-regulation of genes involved in cell cycle control and DNA repair. Biochem Pharmacol 84:1571–1580

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Mathers JC, Ford D (2009) Nutrition, epigenetics and aging. In: Chio SW, Friso S (eds) Nutrients and epigenetics. CRC Press/Taylor & Francis Group, Boca Raton, pp 175–206

    Google Scholar 

  145. Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133:2485S–2493S

    CAS  PubMed  Google Scholar 

  146. Kruh J (1982) Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem 42:65–82

    CAS  PubMed  Google Scholar 

  147. Vidali G, Boffa LC, Mann RS, Allfrey VG (1978) Reversible effects of Na-butyrate on histone acetylation. Biochem Biophys Res Commun 82:223–227

    CAS  PubMed  Google Scholar 

  148. Delage B, Dashwood RH (2008) Dietary manipulation of histone structure and function. Annu Rev Nutr 28:347–366

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Baur JA (2010) Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev 131:261–269

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127:1109–1122

    CAS  PubMed  Google Scholar 

  151. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    CAS  PubMed  Google Scholar 

  152. Lopez-Lopez G, Moreno L, Cogolludo A, Galisteo M, Ibarra M, Duarte J et al (2004) Nitric oxide (NO) scavenging and NO protecting effects of quercetin and their biological significance in vascular smooth muscle. Mol Pharmacol 65:851–859

    CAS  PubMed  Google Scholar 

  153. Bagchi D, Sen CK, Ray SD, Das DK, Bagchi M, Preuss HG et al (2003) Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res 523–524:87–97

    PubMed  Google Scholar 

  154. Park C, So HS, Shin CH, Baek SH, Moon BS, Shin SH et al (2003) Quercetin protects the hydrogen peroxide-induced apoptosis via inhibition of mitochondrial dysfunction in H9c2 cardiomyoblast cells. Biochem Pharmacol 66:1287–1295

    CAS  PubMed  Google Scholar 

  155. Pietri S, Maurelli E, Drieu K, Culcasi M (1997) Cardioprotective and anti-oxidant effects of the terpenoid constituents of Ginkgo biloba extract (EGb 761). J MolCell Cardiol 29:733–742

    CAS  Google Scholar 

  156. Haramaki N, Aggarwal S, Kawabata T, Droy-Lefaix MT, Packer L (1994) Effects of natural antioxidant Ginkgo biloba extract (EGB 761) on myocardial ischemia-reperfusion injury. Free Radic Biol Med 16:789–794

    CAS  PubMed  Google Scholar 

  157. Liu X, Wei J, Tan F, Zhou S, Wurthwein G, Rohdewald P (2004) Pycnogenol, French maritime pine bark extract, improves endothelial function of hypertensive patients. Life Sci 74:855–862

    CAS  PubMed  Google Scholar 

  158. Galisteo M, Garcia-Saura MF, Jimenez R, Villar IC, Zarzuelo A, Vargas F et al (2004) Effects of chronic quercetin treatment on antioxidant defence system and oxidative status of deoxycorticosterone acetate-salt-hypertensive rats. Mol Cell Biochem 259:91–99

    CAS  PubMed  Google Scholar 

  159. Read MA (1995) Flavonoids: naturally occurring anti-inflammatory agents. Am J Pathol 147:235–237

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Rump AF, Schussler M, Acar D, Cordes A, Ratke R, Theisohn M et al (1995) Effects of different inotropes with antioxidant properties on acute regional myocardial ischemia in isolated rabbit hearts. Gen Pharmacol 26:603–611

    CAS  PubMed  Google Scholar 

  161. Varga E (2002) The protective effect of EGb 761 in isolated isochemical/reperfused rat hearts. Acta Pharm Hung 72:265–271

    CAS  PubMed  Google Scholar 

  162. Osman HE, Maalej N, Shanmuganayagam D, Folts JD (1998) Grape juice but not orange or grapefruit juice inhibits platelet activity in dogs and monkeys. J Nutr 128:2307–2312

    CAS  PubMed  Google Scholar 

  163. Belinky PA, Aviram M, Mahmood S, Vaya J (1998) Structural aspects of the inhibitory effect of glabridin on LDL oxidation. Free Radic Biol Med 24:1419–1429

    CAS  PubMed  Google Scholar 

  164. Nothlings U, Schulze MB, Weikert C, Boeing H, van der Schouw YT, Bamia C et al (2008) Intake of vegetables, legumes, and fruit, and risk for all-cause, cardiovascular, and cancer mortality in a European diabetic population. J Nutr 138:775–781

    PubMed  Google Scholar 

  165. Maron DJ (2004) Flavonoids for reduction of atherosclerotic risk. Curr Atheroscler Rep 6:73–78

    PubMed  Google Scholar 

  166. Huxley RR, Neil HA (2003) The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr 57:904–908

    CAS  PubMed  Google Scholar 

  167. Peters U, Poole C, Arab L (2001) Does tea affect cardiovascular disease? A meta-analysis. Am J Epidemiol 154:495–503

    CAS  PubMed  Google Scholar 

  168. Hodgson JM, Croft KD (2010) Tea flavonoids and cardiovascular health. Mol Aspects Med 31:495–502

    CAS  PubMed  Google Scholar 

  169. Lin YL, Lin JK (1997) (−)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol Pharmacol 52:465–472

    CAS  PubMed  Google Scholar 

  170. Danesi F, Di Nunzio M, Boschetti E, Bordoni A (2009) Green tea extract selectively activates peroxisome proliferator-activated receptor beta/delta in cultured cardiomyocytes. Br J Nutr 101:1736–1739

    CAS  PubMed  Google Scholar 

  171. Pascual-Teresa S, Moreno DA, Garcia-Viguera C (2010) Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 11:1679–1703

    PubMed Central  PubMed  Google Scholar 

  172. Sheng R, Gu ZL, **e ML, Zhou WX, Guo CY (2007) EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats. Acta Pharmacol Sin 28:191–201

    CAS  PubMed  Google Scholar 

  173. Fisher ND, Hughes M, Gerhard-Herman M, Hollenberg NK (2003) Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens 21:2281–2286

    CAS  PubMed  Google Scholar 

  174. Katan MB (1997) Flavonoids and heart disease. Am J Clin Nutr 65:1542–1543

    CAS  PubMed  Google Scholar 

  175. Hollman PC, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942

    CAS  PubMed  Google Scholar 

  176. Hertog MG, Hollman PC, Katan MB, Kromhout D (1993) Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer 20:21–29

    CAS  PubMed  Google Scholar 

  177. Knekt P, Jarvinen R, Reunanen A, Maatela J (1996) Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ 312:478–481

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Rimm EB, Katan MB, Ascherio A, Stampfer MJ, Willett WC (1996) Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann Intern Med 125:384–389

    CAS  PubMed  Google Scholar 

  179. Hooper L, Kroon PA, Rimm EB et al (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 88:38–50

    CAS  PubMed  Google Scholar 

  180. Hodgson JM (2008) Tea flavonoids and cardiovascular disease. Asia Pac J Clin Nutr 17(Suppl 1):288–290

    CAS  PubMed  Google Scholar 

  181. Akisu M, Kultursay N, Coker I, Huseyinov A (1998) Platelet-activating factor is an important mediator in hypoxic ischemic brain injury in the newborn rat. Flunarizine and Ginkgo biloba extract reduce PAF concentration in the brain. Biol Neonate 74:439–444

    CAS  PubMed  Google Scholar 

  182. Sato M, Maulik G, Ray PS, Bagchi D, Das DK (1999) Cardioprotective effects of grape seed proanthocyanidin against ischemic reperfusion injury. J Mol Cell Cardiol 31:1289–1297

    CAS  PubMed  Google Scholar 

  183. Leikert JF, Rathel TR, Wohlfart P, Cheynier V, Vollmar AM, Dirsch VM (2002) Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation 106:1614–1617

    CAS  PubMed  Google Scholar 

  184. Rathel TR, Samtleben R, Vollmar AM, Dirsch VM (2007) Activation of endothelial nitric oxide synthase by red wine polyphenols: impact of grape cultivars, growing area and the vinification process. J Hypertens 25:541–549

    PubMed  Google Scholar 

  185. Kondrashov A, Vrankova S, Dovinova I, Sevcik R, Parohova J, Barta A et al (2012) The effects of new Alibernet red wine extract on nitric oxide and reactive oxygen species production in spontaneously hypertensive rats. Oxid Med Cell Longev 2012:806285

    PubMed Central  PubMed  Google Scholar 

  186. Saleem TS, Basha SD (2010) Red wine: a drink to your heart. J Cardiovasc Dis Res 1:171–176

    PubMed Central  PubMed  Google Scholar 

  187. Estruch R, Sacanella E, Badia E et al (2004) Different effects of red wine and gin consumption on inflammatory biomarkers of atherosclerosis: a prospective randomized crossover trial. Effects of wine on inflammatory markers. Atherosclerosis 175:117–123

    CAS  PubMed  Google Scholar 

  188. Pechanova O, Bernatova I, Babal P, Martinez MC., Kysela S, Stvrtina S et al (2004) Red wine polyphenols prevent cardiovascular alterations in L-NAME-induced hypertension. J Hypertens 22:1551–1559

    CAS  PubMed  Google Scholar 

  189. Duarte J, Andriambeloson E, Diebolt M, Andriantsitohaina R (2004) Wine polyphenols stimulate superoxide anion production to promote calcium signaling and endothelial-dependent vasodilatation. Physiol Res 53:595–602

    CAS  PubMed  Google Scholar 

  190. Shenoy SF, Chowanadisai W, Sharman E, Keen CL, Liu J, Rucker RB (2011) Biofactors in food promote health by enhancing mitochondrial function. Cal Agri 65:141–147

    Google Scholar 

  191. Duarte S, Arango D, Parihar A, Hamel P, Yasmeen R, Doseff AI (2013) Apigenin protects endothelial cells from lipopolysaccharide (LPS)-induced inflammation by decreasing caspase-3 activation and modulating mitochondrial function. Int J Mol Sci 14:17664–17679

    PubMed Central  PubMed  Google Scholar 

  192. Arango D, Morohashi K, Yilmaz A, Kuramochi K, Parihar A, Brahimaj B, Grotewold E, Doseff AI (2013) Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proc Natl Acad Sci U S A 110:E2153–E2162

    PubMed Central  CAS  PubMed  Google Scholar 

  193. Toufektsian MC, de Lorgeril M, Nagy N, Salen P, Donati MB, Giordano L et al (2008) Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J Nutr 138:747–752

    CAS  PubMed  Google Scholar 

  194. Bendini A, Cerretani L, Carrasco-Pancorbo A, Gomez-Caravaca AM, Segura-Carretero A, Fernandez-Gutierrez A et al (2007) Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 12:1679–1719

    CAS  PubMed  Google Scholar 

  195. Bertelli AA (2007) Wine, research and cardiovascular disease: instructions for use. Atherosclerosis 195:242–247

    CAS  PubMed  Google Scholar 

  196. Fito M, de la TR, Covas MI (2007) Olive oil and oxidative stress. Mol Nutr Food Res 51:1215–1224

    CAS  PubMed  Google Scholar 

  197. Hao J, Shen W, Yu G, Jia H, Li X, Feng Z et al (2010). Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes. J Nutr Biochem 21:634–644

    CAS  PubMed  Google Scholar 

  198. Vinson JA, Dabbagh YA (1998) Effect of green and black tea supplementation on lipids, lipid oxidation and fibrinogen in the hamster: mechanisms for the epidemiological benefits of tea drinking. FEBS Lett 433:44–46

    CAS  PubMed  Google Scholar 

  199. Bell DR, Gochenaur K (2006) Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J Appl Physiol 100:1164–1170

    CAS  PubMed  Google Scholar 

  200. Cassidy A, De Vivo, I, Liu Y et al (2010) Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr 91:1273–1280

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54:4069–4075

    CAS  PubMed  Google Scholar 

  202. Gross LS, Li L, Ford ES, Liu S (2004) Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am J Clin Nutr 79:774–779

    CAS  PubMed  Google Scholar 

  203. Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B et al (2012) Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr 95:925–933

    PubMed Central  CAS  PubMed  Google Scholar 

  204. Zhang Y, Jayaprakasam B, Seeram NP, Olson LK, DeWitt D, Nair MG (2004) Insulin secretion and cyclooxygenase enzyme inhibition by cabernet sauvignon grape skin compounds. J Agric Food Chem 52:228–233

    CAS  PubMed  Google Scholar 

  205. Song Y, Manson JE, Buring JE, Sesso HD, Liu S (2005) Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J Am Coll Nutr 24:376–384

    CAS  PubMed  Google Scholar 

  206. Shabrova EV, Tarnopolsky O, Singh AP, Plutzky J, Vorsa N, Quadro L (2011) Insights into the molecular mechanisms of the anti-atherogenic actions of flavonoids in normal and obese mice. PLoS ONE 6:e24634

    PubMed Central  CAS  PubMed  Google Scholar 

  207. Yamamoto M, Kumagai A, Yamamura Y (1983) Plasma lipid-lowering and lipogenesis-stimulating actions of ginseng saponins in tumor-bearing rats. Am J Chin Med 11:88–95

    CAS  PubMed  Google Scholar 

  208. Han LK, Kimura Y, Kawashima M, Takaku T, Taniyama T, Hayashi T et al (2001) Anti-obesity effects in rodents of dietary teasaponin, a lipase inhibitor. Int J Obes Relat Metab Disord 25:1459–1464

    CAS  PubMed  Google Scholar 

  209. Won S, Kim S, Kim Y, Lee P, Ryu J, Kim J (2007) Licochalcone A: a lipase inhibitor from the roots of Glycyrrhiza uralensis. Food Res Intern 40:1046–1050

    CAS  Google Scholar 

  210. Zhao HL, Kim YS (2004) Determination of the kinetic properties of platycodin D for the inhibition of pancreatic lipase using a 1,2-diglyceride-based colorimetric assay. Arch Pharm Res 27:1048–1052

    CAS  PubMed  Google Scholar 

  211. Kwon CS, Sohn HY, Kim SH, Kim JH, Son KH, Lee JS et al (2003) Anti-obesity effect of Dioscorea nipponica Makino with lipase-inhibitory activity in rodents. Biosci Biotechnol Biochem 67:1451–1456

    CAS  PubMed  Google Scholar 

  212. Rani N, Sharma SK, Vasudeva N (2012) Assessment of antiobesity potential of Achyranthes aspera Linn. Seed. Evid Based Complement Alternat Med 2012:715912

    PubMed Central  PubMed  Google Scholar 

  213. Ono Y, Hattori E, Fukaya Y, Imai S, Ohizumi Y (2006) Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. J Ethnopharmacol 106:238–244

    PubMed  Google Scholar 

  214. Kurowska EM, Spence JD, Jordan J, Wetmore S, Freeman DJ, Piche LA et al (2000) HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia. Am J Clin Nutr 72:1095–1100

    CAS  PubMed  Google Scholar 

  215. Tsuda T, Ueno Y, Aoki H, Koda T, Horio F, Takahashi N et al (2004) Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochem Biophys Res Commun 316:149–157

    CAS  PubMed  Google Scholar 

  216. Tsuda T, Ueno Y, Kojo H, Yoshikawa T, Osawa T (2005) Gene expression profile of isolated rat adipocytes treated with anthocyanins. Biochim Biophys Acta 1733:137–147

    CAS  PubMed  Google Scholar 

  217. Tsuda T, Ueno Y, Yoshikawa T, Kojo H, Osawa T (2006) Microarray profiling of gene expression in human adipocytes in response to anthocyanins. Biochem Pharmacol 71:1184–1197

    CAS  PubMed  Google Scholar 

  218. Tsuda T, Horio F, Uchida K, Aoki H, Osawa T (2003) Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133:2125–2130

    CAS  PubMed  Google Scholar 

  219. Le Marchand L (2002) Cancer preventive effects of flavonoids–a review. Biomed Pharmacother 56:296–301

    CAS  PubMed  Google Scholar 

  220. Messina MJ, Persky V, Setchell KD, Barnes S (1994) Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer 21:113–131

    CAS  PubMed  Google Scholar 

  221. Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, Aiello FB et al (2000) Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer 87:595–600

    CAS  PubMed  Google Scholar 

  222. Peterson G, Barnes S (1991) Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochem Biophys Res Commun 179:661–667

    CAS  PubMed  Google Scholar 

  223. Kyle E, Neckers L, Takimoto C, Curt G, Bergan R (1997) Genistein-induced apoptosis of prostate cancer cells is preceded by a specific decrease in focal adhesion kinase activity. Mol Pharmacol 51:193–200

    CAS  PubMed  Google Scholar 

  224. Merlino GT, Xu YH, Ishii S, Clark AJ, Semba K, Toyoshima K et al (1984) Amplification and enhanced expression of the epidermal growth factor receptor gene in A431 human carcinoma cells. Science 224:417–419

    CAS  PubMed  Google Scholar 

  225. Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ et al (1999) Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol 128:999–1010

    PubMed Central  CAS  PubMed  Google Scholar 

  226. Dodurga Y, Avci CB, Satiroglu-Tufan L, Susluer SY, Sigva Z OD, Saydam G et al (2012) Effects of quercetin induced cell death on a novel Gene “URG4/URGCP” expression in leukemia cells. J Cancer Sci Ther 4:006–009

    CAS  Google Scholar 

  227. Hofmann J, Ueberall F, Posch L, Maly K, Herrmann DB, Grunicke H (1989) Synergistic enhancement of the antiproliferative activity of cis-diamminedichloroplatinum(II) by the ether lipid analogue BM41440, an inhibitor of protein kinase C. Lipids 24:312–317

    CAS  PubMed  Google Scholar 

  228. Suolinna EM, Buchsbaum RN, Racker E (1975) The effect of flavonoids on aerobic glycolysis and growth of tumor cells. Cancer Res 35:1865–1872

    CAS  PubMed  Google Scholar 

  229. Edwards JM, Raffauf RF, Le Quesne PW (1979) Antineoplastic activity and cytotoxicity of flavones, isoflavones, and flavanones. J Nat Prod 42:85–91

    CAS  PubMed  Google Scholar 

  230. Wei YQ, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A (1994) Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res 54:4952–4957

    CAS  PubMed  Google Scholar 

  231. Zhou J, Allred DC, Avis I, Martínez A, Vos MD, Smith L, Treston AM, Mulshine JL (2001) Differential expression of the early lung cancer detection marker, heterogeneous nuclear ribonucleoprotein-A2/B1 (hnRNP-A2/B1) in normal breast and neoplastic breast cancer. Breast Cancer Res Treat 66:217–224

    CAS  PubMed  Google Scholar 

  232. Golan-Gerstl R, Cohen M, Shilo A, Suh SS, Bakacs A, Coppola L, Karni R (2011) Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res 71:4464–4472

    CAS  PubMed  Google Scholar 

  233. Sueoka E, Sueoka N, Iwanaga K, Sato A, Suga K, Hayashi S, Nagasawa K, Nakachi K (2005) Detection of plasma hnRNP B1 mRNA, a new cancer biomarker, in lung cancer patients by quantitative real-time polymerase chain reaction. Lung Cancer 48:77–83

    PubMed  Google Scholar 

  234. Wu S, Sato M, Endo C, Sakurada A, Dong B, Aikawa H, Chen Y, Okada Y, Matsumura Y, Sueoka E, Kondo T (2003) hnRNP B1 protein may be a possible prognostic factor in squamous cell carcinoma of the lung. Lung Cancer 41:179–186

    PubMed  Google Scholar 

  235. Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136:777–793

    PubMed Central  CAS  PubMed  Google Scholar 

  236. Rodrigo KA, Rawal Y, Renner RJ, Schwartz SJ, Tian Q, Larsen PE et al (2006) Suppression of the tumorigenic phenotype in human oral squamous cell carcinoma cells by an ethanol extract derived from freeze-dried black raspberries. Nutr Cancer 54:58–68

    PubMed Central  CAS  PubMed  Google Scholar 

  237. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS et al (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54:9329–9339

    CAS  PubMed  Google Scholar 

  238. Hakimuddin F, Paliyath G, Meckling K (2004) Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7 cells. Breast Cancer Res Treat 85:65–79

    CAS  PubMed  Google Scholar 

  239. Galvano F, La Fauci L, Lazzarino G, Fogliano V, Ritieni A, Ciappellano S et al (2004) Cyanidins: metabolism and biological properties. J Nutr Biochem 15:2–11

    CAS  PubMed  Google Scholar 

  240. Zikri NN, Riedl KM, Wang LS, Lechner J, Schwartz SJ, Stoner GD (2009) Black raspberry components inhibit proliferation, induce apoptosis, and modulate gene expression in rat esophageal epithelial cells. Nutr Cancer 61:816–826

    PubMed Central  PubMed  Google Scholar 

  241. Hou DX, Kai K, Li JJ, Lin S, Terahara N, Wakamatsu M et al (2004) Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms. Carcinogenesis 25:29–36

    CAS  PubMed  Google Scholar 

  242. Shin DY, Lee WS, Lu JN, Kang MH, Ryu CH, Kim GY et al (2009) Induction of apoptosis in human colon cancer HCT-116 cells by anthocyanins through suppression of Akt and activation of p38-MAPK. Int J Oncol 35:1499–1504

    CAS  PubMed  Google Scholar 

  243. Shukla S, Gupta S (2004). Molecular mechanisms for apigenin-induced cell-cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Mol Carcinog 39:114–126

    CAS  PubMed  Google Scholar 

  244. Nam NH (2006) Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 6:945–951

    CAS  PubMed  Google Scholar 

  245. Martin S, Giannone G, Andriantsitohaina R, Martinez MC (2003) Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br J Pharmacol 139:1095–1102

    PubMed Central  CAS  PubMed  Google Scholar 

  246. Chang YC, Huang HP, Hsu JD, Yang SF, Wang CJ (2005) Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells. Toxicol Appl Pharmacol 205:201–212

    CAS  PubMed  Google Scholar 

  247. Huang C, Huang Y, Li J, Hu W, Aziz R, Tang MS et al (2002) Inhibition of benzo(a)pyrene diol-epoxide-induced transactivation of activated protein 1 and nuclear factor kappaB by black raspberry extracts. Cancer Res 62:6857–6863

    CAS  PubMed  Google Scholar 

  248. Christensen KY, Naidu A, Parent ME, Pintos J, Abrahamowicz M, Siemiatycki J et al (2012) The risk of lung cancer related to dietary intake of flavonoids. Nutr Cancer 64:964–974

    CAS  PubMed  Google Scholar 

  249. Arts IC (2008) A review of the epidemiological evidence on tea, flavonoids, and lung cancer. J Nutr 138:1561S–1566S

    CAS  PubMed  Google Scholar 

  250. Le Marchand L, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN (2000) Intake of flavonoids and lung cancer. J Natl Cancer Inst 92:154–160

    CAS  PubMed  Google Scholar 

  251. Kohno H, Tanaka T, Kawabata K, Hirose Y, Sugie S, Tsuda H et al (2002) Silymarin, a naturally occurring polyphenolic antioxidant flavonoid, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats. Int J Cancer 101:461–468

    CAS  PubMed  Google Scholar 

  252. Gates MA, Vitonis AF, Tworoger SS, Rosner B, Titus-Ernstoff L, Hankinson SE et al (2009) Flavonoid intake and ovarian cancer risk in a population-based case-control study. Int J Cancer 124:1918–1925

    PubMed Central  CAS  PubMed  Google Scholar 

  253. Kale A, Gawande S, Kotwal S (2008) Cancer phytotherapeutics: role for flavonoids at the cellular level. Phytother Res 22:567–577

    CAS  PubMed  Google Scholar 

  254. Willett WC, Koplan JP, Nugent R, Dusenbury C, Puska P, Gaziano TA (2006) Prevention of chronic disease by means of diet and lifestyle changes. In: Jamison DT, Breman JG, Measham AR et al (eds) Disease control priorities in develo** countries, 2nd edn. World Bank, Washington, DC, pp 833–850

    Google Scholar 

  255. Burslem J, Schonfeld G, Howald MA, Weidman SW, Miller JP (1978) Plasma apoprotein and lipoprotein lipid levels in vegetarians. Metabolism 27:711–719

    CAS  PubMed  Google Scholar 

  256. Zhang X, Shu XO, Gao YT, Yang G, Li Q, Li H et al (2003) Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. J Nutr 133:2874–2878

    CAS  PubMed  Google Scholar 

  257. Bhathena SJ, Velasquez MT (2002) Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 76:1191–1201

    CAS  PubMed  Google Scholar 

  258. Chen Z, Li Y, Zhao LC, Zhou BF, Yang J, Wang ZW et al (2004) A study on the association between tea consumption and stroke. Zhonghua Liu **ng Bing Xue Za Zhi 25:666–670

    PubMed  Google Scholar 

  259. Sano J, Inami S, Seimiya K, Ohba T, Sakai S, Takano T et al (2004) Effects of green tea intake on the development of coronary artery disease. Circ J 68:665–670

    CAS  PubMed  Google Scholar 

  260. Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133:3275S–3284S

    CAS  PubMed  Google Scholar 

  261. Shimada K, Kawarabayashi T, Tanaka A, Fukuda D, Nakamura Y, Yoshiyama M et al (2004) Oolong tea increases plasma adiponectin levels and low-density lipoprotein particle size in patients with coronary artery disease. Diabetes Res Clin Pract 65:227–234

    CAS  PubMed  Google Scholar 

  262. Mennen LI, Sapinho D, de Bree A, Arnault N, Bertrais S, Galan P et al (2004) Consumption of foods rich in flavonoids is related to a decreased cardiovascular risk in apparently healthy French women. J Nutr 134:923–936

    CAS  PubMed  Google Scholar 

  263. Hubbard GP, Wolffram S, Lovegrove JA, Gibbins JM (2004) Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J Thromb Haemost 2:2138–2145

    CAS  PubMed  Google Scholar 

  264. Wang HK (2000) The therapeutic potential of flavonoids. Expert Opin Investig Drugs 9:2103–2119

    CAS  PubMed  Google Scholar 

  265. Dohadwala MM, Holbrook M, Hamburg NM et al (2011) Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am J Clin Nutr 93:934–940

    PubMed Central  CAS  PubMed  Google Scholar 

  266. Makela S, Santti R, Salo L, McLachlan JA (1995) Phytoestrogens are partial estrogen agonists in the adult male mouse. Environ Health Perspect 103(Suppl 7):123–127

    PubMed Central  CAS  PubMed  Google Scholar 

  267. Setchell KD (1998) Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68:1333S–1346S

    CAS  PubMed  Google Scholar 

  268. Amato P, Young RL, Steinberg FM, Murray MJ, Lewis RD, Cramer MA et al (2013) Effect of soy isoflavone supplementation on menopausal quality of life. Menopause 20(4):443–447

    PubMed  Google Scholar 

  269. Wong WW, Lewis RD, Steinberg FM, Murray MJ, Cramer MA, Amato P et al (2009) Soy isoflavone supplementation and bone mineral density in menopausal women: a 2-y multicenter clinical trial. Am J Clin Nutr 90:1433–1439

    PubMed Central  CAS  PubMed  Google Scholar 

  270. Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003) Flavonoids: promising anticancer agents. Med Res Rev 23:519–534

    CAS  PubMed  Google Scholar 

  271. Hoensch H, Groh B, Edler L, Kirch W (2008) Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J Gastroenterol 14:2187–2193

    PubMed Central  CAS  PubMed  Google Scholar 

  272. Walsh KR, Zhang YC, Vodovotz Y, Schwartz SJ, Failla ML (2003) Stability and bioaccessibility of isoflavones from soy bread during in vitro digestion. J Agric Food Chem 51:4603–4609

    CAS  PubMed  Google Scholar 

  273. Ahn-Jarvis J, Clinton SK, Riedl KM, Vodovotz Y, Schwartz SJ (2012) Impact of food matrix on isoflavone metabolism and cardiovascular biomarkers in adults with hypercholesterolemia. Food Funct 3:1051–1058

    PubMed Central  CAS  PubMed  Google Scholar 

  274. Dalais FS, Meliala A, Wattanapenpaiboon N et al (2004) Effects of a diet rich in phytoestrogens on prostate-specific antigen and sex hormones in men diagnosed with prostate cancer. Urology 64:510–515

    PubMed  Google Scholar 

  275. Tiziani S, Vodovotz Y (2005) Rheological characterization of a novel functional food: tomato juice with soy germ. J Agric Food Chem 53:7267–7273

    CAS  PubMed  Google Scholar 

  276. Lean ME, Noroozi M, Kelly I, Burns J, Talwar D, Sattar N et al (1999) Dietary flavonols protect diabetic human lymphocytes against oxidative damage to DNA. Diabetes 48:176–181

    CAS  PubMed  Google Scholar 

  277. Waterhouse AL (2002) Wine phenolics. Ann N Y Acad Sci 957:21–36

    CAS  PubMed  Google Scholar 

  278. United Stated Department of Agriculture (USDA) (2013) USDA database for the flavonoid content of selected foods, Release 3.1 (2013). https://www.ars.usda.gov/Services/docs.htm?docid=6231. Last Accessed on 31 Oct 2013

  279. Maras JE, Talegawkar SA, Qiao N, Lyle B, Ferrucci L, Tucker KL (2011) Flavonoid intakes in the Baltimore longitudinal study of aging. J Food Compost Anal 24:1103–1109

    PubMed Central  CAS  PubMed  Google Scholar 

  280. Mattila P, Astola J, Kumpulainen J (2000) Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. J Agric Food Chem 48:5834–5841

    CAS  PubMed  Google Scholar 

  281. USDA Database for the Flavonoid Content of Selected Foods, Release 3.0 (2011) Nutrient data laboratory. U.S. Department of Agriculture, Agricultural Research Service. http://www.ars.usda.gov/nutrientdata/flav. Accessed on 14 Jan 2013

  282. Rouseff RL (1988) Liquid chromatographic determination of naringin and neohesperidin as a detector of grapefruit juice in orange juice. J Assoc Off Anal Chem 71:798–802

    CAS  PubMed  Google Scholar 

  283. Teselkin YuO, Babenkova IV, Tjukavkina NA, Rulenko IA, Kolesnik Yu, Kolhir VK et al (1998) Influence of dihydroquercetin on the lipid peroxidation of mice during post-radiation period. Phytother Res 12:519

    Google Scholar 

  284. Hammerstone JF, Lazarus SA, Schmitz HH (2000) Procyanidin content and variation in some commonly consumed foods. J Nutr 130:2086S–2092S

    CAS  PubMed  Google Scholar 

  285. Prior RL, Lazarus SA, Cao G, Muccitelli H, Hammerstone JF (2001) Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 49:1270–1276

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in Dr. Doseff’s laboratory is supported by grants NIH (R01 HL075040-01) and by state funds appropriated to the Ohio Plant Biotechnology Consortium through The Ohio State University, Ohio Agricultural Research and Development Center. Dr. Grotewold’s research on anthocyanins is supported by grant from the USDA (2010-65115-20408). Research in the regulatory networks of phenolics biosynthesis in Drs. Doseff and Grotewold’s laboratories is supported by NSF (IOS-1125620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea I. Doseff PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parihar, A., Grotewold, E., Doseff, A. (2015). Flavonoid Dietetics: Mechanisms and Emerging Roles of Plant Nutraceuticals. In: Chen, C. (eds) Pigments in Fruits and Vegetables. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2356-4_5

Download citation

Publish with us

Policies and ethics

Navigation