Prediction of Mitochondrial Protein Function by Comparative Physiology and Phylogenetic Profiling

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1264))

Abstract

According to the endosymbiotic theory, mitochondria originate from a free-living alpha-proteobacteria that established an intracellular symbiosis with the ancestor of present-day eukaryotic cells. During the bacterium-to-organelle transformation, the proto-mitochondrial proteome has undergone a massive turnover, whereby less than 20 % of modern mitochondrial proteomes can be traced back to the bacterial ancestor. Moreover, mitochondrial proteomes from several eukaryotic organisms, for example, yeast and human, show a rather modest overlap, reflecting differences in mitochondrial physiology. Those differences may result from the combination of differential gain and loss of genes and retargeting processes among lineages. Therefore, an evolutionary signature, also called “phylogenetic profile”, could be generated for every mitochondrial protein. Here, we present two evolutionary biology approaches to study mitochondrial physiology: the first strategy, which we refer to as “comparative physiology,” allows the de novo identification of mitochondrial proteins involved in a physiological function; the second, known as “phylogenetic profiling,” allows to predict protein functions and functional interactions by comparing phylogenetic profiles of uncharacterized and known components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Perocchi F, Jensen LJ, Gagneur J et al (2006) Assessing systems properties of yeast mitochondria through an interaction map of the organelle. PLoS Genet 2:e170

    Article  PubMed Central  PubMed  Google Scholar 

  2. Pagliarini DJ, Calvo SE, Chang BA et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Gabaldón T (2006) Computational approaches for the prediction of protein function in the mitochondrion. Am J Physiol Cell Physiol 291:C1121–C1128

    Article  PubMed  Google Scholar 

  4. Perocchi F, Gohil VM, Girgis HS (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467:291–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rost B, Liu J, Nair R et al (2003) Automatic prediction of protein function. Cell Mol Life Sci 60:2637–2650

    Article  CAS  PubMed  Google Scholar 

  6. Barrientos A (2003) Yeast models of human mitochondrial diseases. IUBMB Life 55:83–95

    Article  CAS  PubMed  Google Scholar 

  7. Perocchi F, Mancera E, Steinmetz LM (2008) Systematic screens for human disease genes, from yeast to human and back. Mol Biosyst 4:18–29

    Article  CAS  PubMed  Google Scholar 

  8. Prokisch H, Scharfe C, Camp DG (2004) Integrative analysis of the mitochondrial proteome in yeast. PLoS Biol 2:e160

    Article  PubMed Central  PubMed  Google Scholar 

  9. Gabaldón T, Huynen MA (2007) From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput Biol 3:e219

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kihara D (2011) Protein function prediction for omics era. Springer, New York

    Book  Google Scholar 

  11. Gabaldón T, Huynen MA (2005) Lineage-specific gene loss following mitochondrial endosymbiosis and its potential for function prediction in eukaryotes. Bioinformatics 21:144–150

    Article  Google Scholar 

  12. Huynen MA, Snel B, Bork P et al (2001) The phylogenetic distribution of frataxin indicates a role in iron-sulfur cluster protein assembly. Hum Mol Genet 10:2463–2468

    Article  CAS  PubMed  Google Scholar 

  13. Gabaldón T, Rainey D, Huynen MA (2005) Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I). J Mol Biol 348:857–870

    Article  PubMed  Google Scholar 

  14. Baughman JM, Perocchi F, Girgis HS (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Prokisch H, Andreoli C, Ahting U et al (2006) MitoP2: the mitochondrial proteome database—now including mouse data. Nucleic Acids Res 34:D705–D711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Smith AC, Blackshaw JA, Robinson AJ (2012) MitoMiner: a data warehouse for mitochondrial proteomics data. Nucleic Acids Res 40:D1160–D1167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Scharfe C, Lu HH, Neuenburg JK et al (2009) Map** gene associations in human mitochondria using clinical disease phenotypes. PLoS Comput Biol 5:e1000374

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sigrist CJ, de Castro E, Cerutti L et al (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41:D344–D347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–7

    Article  CAS  PubMed  Google Scholar 

  21. Ostlund G, Schmitt T, Forslund K et al (2009) InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 38:D196–D203

    Article  PubMed Central  PubMed  Google Scholar 

  22. Datta RS, Meacham C, Samad B et al (2009) Berkeley PHOG: PhyloFacts orthology group prediction web server. Nucleic Acids Res 37:W84–W89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Plovanich M, Bogorad RL, Sancak Y et al (2013) MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One 8:e55785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Raffaello A, De Stefani D, Sabbadin D et al (2013) The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 32:2362–2376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Deutsche Forschungsgemeinschaft Emmy Noether Programme Grant PE 2053/1-1 and the Bavarian State Ministry of Education, Science and the Arts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Perocchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cheng, Y., Perocchi, F. (2015). Prediction of Mitochondrial Protein Function by Comparative Physiology and Phylogenetic Profiling. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1264. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2257-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2257-4_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2256-7

  • Online ISBN: 978-1-4939-2257-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation