Phylogenetic Analysis Using Protein Mass Spectrometry

  • Protocol
  • First Online:
Proteome Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1549))

Abstract

Through advances in molecular biology, comparative analysis of DNA sequences is currently the cornerstone in the study of molecular evolution and phylogenetics. Nevertheless, protein mass spectrometry offers some unique opportunities to enable phylogenetic analyses in organisms where DNA may be difficult or costly to obtain. To date, the methods of phylogenetic analysis using protein mass spectrometry can be classified into three categories: (1) de novo protein sequencing followed by classical phylogenetic reconstruction, (2) direct phylogenetic reconstruction using proteolytic peptide mass maps, and (3) map** of mass spectral data onto classical phylogenetic trees. In this chapter, we provide a brief description of the three methods and the protocol for each method along with relevant tools and algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448

    Article  CAS  PubMed  Google Scholar 

  3. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24(3):133–141. doi:10.1016/j.tig.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  4. Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC (2007) Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316(5822):280–285. doi:10.1126/science.1137614

    Article  CAS  PubMed  Google Scholar 

  5. Cappellini E, Jensen LJ, Szklarczyk D, Ginolhac A, da Fonseca RA, Stafford TW, Holen SR, Collins MJ, Orlando L, Willerslev E, Gilbert MT, Olsen JV (2012) Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J Proteome Res 11(2):917–926. doi:10.1021/pr200721u

    Article  CAS  PubMed  Google Scholar 

  6. Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB (2011) The real cost of sequencing: higher than you think! Genome Biol 12(8):125. doi:10.1186/gb-2011-12-8-125

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lun AT, Swaminathan K, Wong JW, Downard KM (2013) Mass trees: a new phylogenetic approach and algorithm to chart evolutionary history with mass spectrometry. Anal Chem 85(11):5475–5482. doi:10.1021/ac4005875

    Article  CAS  PubMed  Google Scholar 

  8. Ma S, Downard KM, Wong JW (2015) FluClass: a novel algorithm and approach to score and visualize the phylogeny of the influenza virus using mass spectrometry. Anal Chim Acta 895:54–61. doi:10.1016/j.aca.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  9. Swaminathan K, Downard KM (2014) Evolution of influenza neuraminidase and the detection of antiviral resistant strains using mass trees. Anal Chem 86(1):629–637. doi:10.1021/ac402892m

    Article  CAS  PubMed  Google Scholar 

  10. Edman P (1949) A method for the determination of amino acid sequence in peptides. Arch Biochem 22(3):475

    CAS  PubMed  Google Scholar 

  11. Prager EM, Welling GW, Wilson AC (1978) Comparison of various immunological methods for distinguishing among mammalian pancreatic ribonucleases of known amino acid sequence. J Mol Evol 10(4):293–307

    Article  CAS  PubMed  Google Scholar 

  12. Harris H (1966) Enzyme polymorphisms in man. Proc R Soc Lond B Biol Sci 164(995):298–310

    Article  CAS  PubMed  Google Scholar 

  13. Downard KM (2013) Proteoty** for the rapid identification of influenza virus and other biopathogens. Chem Soc Rev 42(22):8584–8595. doi:10.1039/c3cs60081e

    Article  CAS  PubMed  Google Scholar 

  14. Lun AT, Wong JW, Downard KM (2012) FluShuffle and FluResort: new algorithms to identify reassorted strains of the influenza virus by mass spectrometry. BMC Bioinformatics 13:208. doi:10.1186/1471-2105-13-208

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schwahn AB, Wong JW, Downard KM (2009) Subty** of the influenza virus by high resolution mass spectrometry. Anal Chem 81(9):3500–3506. doi:10.1021/ac900026f

    Article  CAS  PubMed  Google Scholar 

  16. Wong JW, Schwahn AB, Downard KM (2010) FluTyper-an algorithm for automated ty** and subty** of the influenza virus from high resolution mass spectral data. BMC Bioinformatics 11:266. doi:10.1186/1471-2105-11-266

    Article  PubMed  PubMed Central  Google Scholar 

  17. Frank AM (2009) Predicting intensity ranks of peptide fragment ions. J Proteome Res 8(5):2226–2240. doi:10.1021/pr800677f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han MV, Zmasek CM (2009) PhyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinformatics 10:356. doi:10.1186/1471-2105-10-356

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30(10):918–920. doi:10.1038/nbt.2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567. doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  21. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197

    Article  CAS  PubMed  Google Scholar 

  22. UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212. doi:10.1093/nar/gku989

    Google Scholar 

  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  24. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. doi:10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  25. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bandeira N, Clauser KR, Pevzner PA (2007) Shotgun protein sequencing: assembly of peptide tandem mass spectra from mixtures of modified proteins. Mol Cell Proteomics 6(7):1123–1134. doi:10.1074/mcp.M700001-MCP200

    Article  CAS  PubMed  Google Scholar 

  27. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89(22):10915–10919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hall BG (2005) Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. Mol Biol Evol 22(3):792–802. doi:10.1093/molbev/msi066

    Article  CAS  PubMed  Google Scholar 

  29. Yang Z, Rannala B (2012) Molecular phylogenetics: principles and practice. Nat Rev Genet 13(5):303–314. doi:10.1038/nrg3186

    Article  CAS  PubMed  Google Scholar 

  30. Hoopmann MR, Finney GL, MacCoss MJ (2007) High-speed data reduction, feature detection, and MS/MS spectrum quality assessment of shotgun proteomics data sets using high-resolution mass spectrometry. Anal Chem 79(15):5620–5632. doi:10.1021/ac0700833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brown TA (2002) Molecular phylogenetics. In: Genomes. Wiley-Liss, Oxford

    Google Scholar 

  32. Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62(4):1435–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Thompson JD, Linard B, Lecompte O, Poch O (2011) A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS One 6(3), e18093. doi:10.1371/journal.pone.0018093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Part of the results presented and cited in this chapter were supported with funds from an Australian Research Council Discovery Project Grant (DP120101167) awarded to K.M.D. and J.W.H.W. S.M. is supported by a China Scholarship Council and UNSW Australia Tuition Fee scholarships. J.W.H.W. is supported by an Australian Research Council Future Fellowship (FT130100096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason W. H. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ma, S., Downard, K.M., Wong, J.W.H. (2017). Phylogenetic Analysis Using Protein Mass Spectrometry. In: Keerthikumar, S., Mathivanan, S. (eds) Proteome Bioinformatics. Methods in Molecular Biology, vol 1549. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6740-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6740-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6738-4

  • Online ISBN: 978-1-4939-6740-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation