Detection of Giardia Cysts and Cryptosporidium Oocysts in Edible Shellfish: Choosing a Target

  • Chapter
  • First Online:
Detection and Enumeration of Bacteria, Yeast, Viruses, and Protozoan in Foods and Freshwater

Abstract

Bivalve mollusks are filter-feeding animals that are often consumed raw or partially cooked. They can harbor a wide variety of microorganisms such as the pathogenic protozoa Giardia and Cryptosporidium . Both these pathogens are well-known causative agents of diarrhea in humans and have been associated with several water and foodborne outbreaks around the world. Their infective stages, cysts and oocysts , respectively, can remain on the gills and other organs of shellfish , posing a potential threat to human health. There is no standard protocol or valid ISO for the detection of cysts and oocysts from shelled mollusks . The aim of this chapter is to describe the main methods used to detect Giardia cysts and Cryptosporidium oocysts from shellfish , based on techniques adapted from clinical and environmental parasitology, as well as molecular procedures. The monitoring of these foodborne protozoa in bivalve mollusks is of great relevance to public health , contributing to knowledge of contamination in one of the main food products derived from aquaculture. Indeed, it also reflects the quality of the environmental health surrounding its cultivation, highlighting another important aspect related to global environmental epidemiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. FAO Food and Agriculture Organization of the United Nations (2020) The state of world fisheries and aquaculture. Sustainability in action. https://doi.org/10.4060/ca9229en. Accessed 21 Sep 2020

  2. Potasman I, Paz A, Odeh M (2002) Infectious outbreaks associated with bivalve shellfish consumption: a worldwide perspective. Clin Infect Dis 35(8):921–928. https://doi.org/10.1086/342330

    Article  PubMed  Google Scholar 

  3. Souza DSM, Ramos APD, Nunes FF et al (2012) Evaluation of tropical water sources and mollusks in southern Brazil using microbiological, biochemical, and chemical parameters. Ecotoxicol Environ Saf 76(2):153–161. https://doi.org/10.1016/j.ecoenv.2011.09.018

    Article  CAS  PubMed  Google Scholar 

  4. Leal DAG, Souza DSM, Caumo KS et al (2018) Genotypic characterization and assessment of infectivity of human waterborne pathogens recovered from oysters and estuarine waters in Brazil. Water Res 137:273–280. https://doi.org/10.1016/j.watres.2018.03.024

    Article  CAS  PubMed  Google Scholar 

  5. Palos Ladeiro M, Bigot-Clivot A, Geba et al (2019) Mollusc bivalves as indicators of contamination of water bodies by protozoan parasites. In: Encyclopedia of environmental health, vol 4, 2nd edn. Elsevier, pp 443–448. https://doi.org/10.1016/B978-0-12-409548-9.10979-0

    Chapter  Google Scholar 

  6. Nappier SP, Graczyk TK, Tamang L et al (2009) Co-localized Crassostrea virginica and Crassostrea ariakensis oysters differ in bioaccumulation, retention and depuration of microbial indicators and human enteropathogens. J Appl Microbiol 108(2):736–744. https://doi.org/10.1111/j.1365-2672.2009.04480.x

    Article  PubMed  Google Scholar 

  7. WHO World Health Organization (2010) In: Rees G, Pond K, Kay D, Bartram J, Santo Domingo J (eds) Safe management of shellfish and harvest waters. International Water Association Publishing, London

    Google Scholar 

  8. Leal DAG, Ramos APD, Souza DSM et al (2013) Sanitary quality of edible bivalve mollusks in Southeastern Brazil using an UV based depuration system. Ocean Coast Manag 72:93–100

    Article  Google Scholar 

  9. Oliveira J, Cunha A, Castilho F et al (2011) Microbial contamination and purification of bivalve shellfish: crucial aspects in monitoring and future perspectives – a mini-review. Food Control 22(6):805–816. https://doi.org/10.1016/j.foodcont.2010.11.032

    Article  Google Scholar 

  10. Souza DSM, Piazza RS, Pilotto MR et al (2013) Virus, protozoa and organic compounds decay in depurated oysters. Int J Food Microbiol 167(3):337–345. https://doi.org/10.1016/j.ijfoodmicro.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  11. Chalmers RM, Sturdee AP, Mellors P et al (1997) Cryptosporidium parvum in environmental samples in the Sligo area, Republic of Ireland: a preliminary report. Lett Appl Microbiol 25(5):380–384. https://doi.org/10.1046/j.1472-765x.1997.00248.x

  12. Fayer R, Graczyk TK, Lewis EJ et al (1998) Survival of infectious Cryptosporidium parvum oocysts in seawater and eastern oysters (Crassostrea virginica) in the Chesapeake Bay. Appl Environ Microbiol 64(3):1070–1074

    Article  CAS  Google Scholar 

  13. Robertson LJ (2007) The potential for marine bivalve shellfish to act as transmission vehicles for outbreaks of protozoan infections in humans: a review. Int J Food Microbiol 120(3):201–216. https://doi.org/10.1016/j.ijfoodmicro.2007.07.058

    Article  CAS  PubMed  Google Scholar 

  14. Certad G, Viscogliosi E, Chabé M et al (2017) Pathogenic mechanisms of Cryptosporidium and Giardia. Trends Parasitol 33(7):561–576. https://doi.org/10.1016/j.pt.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  15. Trevisan C, Torgerson PR, Robertson LJ (2019) Foodborne parasites in Europe: present status and future trends. Trends Parasitol 35(9):695–703. https://doi.org/10.1016/j.pt.2019.07.002

    Article  PubMed  Google Scholar 

  16. Ryan U, Hijjawi N, Feng Y et al (2019) Giardia: an under-reported foodborne parasite. Int J Parasitol 49(1):1–11. https://doi.org/10.1016/j.ijpara.2018.07.003

  17. Ahmed SA, Karanis P (2018) An overview of methods/techniques for the detection of Cryptosporidium in food samples. Parasitol Res 117:629–653. https://doi.org/10.1007/s00436-017-5735-0

    Article  PubMed  Google Scholar 

  18. Widmer G, Carmena D, Kváč M et al (2020) Update on Cryptosporidium spp.: highlights from the seventh international Giardia and Cryptosporidium conference. Parasite 27:14. https://doi.org/10.1051/parasite/2020011

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thompson RCA, Ash A (2019) Molecular epidemiology of Giardia and Cryptosporidium infections – what’s new? Infect Genet Evol 75:103951. https://doi.org/10.1016/j.meegid.2019.103951

    Article  CAS  PubMed  Google Scholar 

  20. Rousseau A, La Carbona S, Dumètre A et al (2018) Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. Parasite 25:14. https://doi.org/10.1051/parasite/2018009

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cernikova L, Faso C, Hehl AB (2018) Five facts about Giardia lamblia. PLoS Pathog 14(9):e1007250. https://doi.org/10.1371/journal.ppat.1007250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tamburrini A, Pozio E (1999) Long-term survival of Cryptosporidium parvum oocysts in seawater and in experimentally infected mussels (Mytilus galloprovincialis). Int J Parasitol 29(5):711–715. https://doi.org/10.1016/S0020-7519(99)00033-8

    Article  CAS  PubMed  Google Scholar 

  23. Hamilton KA, Waso M, Reyneke B et al (2018) Cryptosporidium and Giardia in wastewater and surface water environments. J Environ Qual 47(5):1006–1023. doi: https://doi.org/10.2134/jeq2018.04.0132

  24. Gómez-Couso H, Freire-Santos F, Martínez-Urtaza J (2003) Contamination of bivalve molluscs by Cryptosporidium oocysts: the need for new quality control standards. Int J Food Microbiol 87(1–2):97–105. https://doi.org/10.1016/s0168-1605(03)00057-6

    Article  PubMed  Google Scholar 

  25. Palos Ladeiro M, Bigot A, Aubert D et al (2013) Protozoa interaction with aquatic invertebrate: interest for watercourses biomonitoring. Environ Sci Pollut Res Int 20(2):778–789. https://doi.org/10.1007/s11356-012-1189-1

    Article  CAS  PubMed  Google Scholar 

  26. Ligda P, Claerebout E, Robertson LJ et al (2019) Protocol standardization for the detection of Giardia cysts and Cryptosporidium oocysts in Mediterranean mussels (Mytilus galloprovincialis). Int J Food Microbiol 298:31–38. https://doi.org/10.1016/j.ijfoodmicro.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  27. Kaupke A, Osiński Z, Rzeżutka A (2019) Comparison of Cryptosporidium oocyst recovery methods for their applicability for monitoring of consumer-ready fresh shellfish. Int J Food Microbiol 296:14–20. https://doi.org/10.1016/j.ijfoodmicro.2019.02.011

    Article  CAS  PubMed  Google Scholar 

  28. Freire-Santos F, Oteiza-López A, Castro-Hermida J et al (2001) Viability and infectivity of oocysts recovered from clams, Ruditapes philippinarum, experimentally contaminated with Cryptosporidium parvum. Parasitol Res 87:428–430. https://doi.org/10.1007/s004360100382

    Article  CAS  PubMed  Google Scholar 

  29. Gómez-Couso H, Freire-Santos F, Hernandez-Cordova GA et al (2005) A histological study of the transit of Cryptosporidium parvum oocysts through clams (Tapes decussatus). Int J Food Microbiol 102(1):57–62. https://doi.org/10.1016/j.ijfoodmicro.2004.12.002

    Article  PubMed  Google Scholar 

  30. Géba E, Aubert D, Durand L et al (2020) Use of the bivalve Dreissena polymorpha as a biomonitoring tool to reflect the protozoan load in freshwater bodies. Water Res 170:115297. https://doi.org/10.1016/j.watres.2019.115297

    Article  CAS  PubMed  Google Scholar 

  31. Giangaspero A, Molini U, Iorio R et al (2005) Cryptosporidium parvum oocysts in seawater clams (Chamelea gallina) in Italy. Prev Vet Med 69(3–4):203–212. https://doi.org/10.1016/j.prevetmed.2005.02.006

  32. Leal DAG, Pereira MA, Franco RMB et al (2008) First report of Cryptosporidium spp. oocysts in oysters (Crassostrea rhizophorae) and cockles (Tivela mactroides) in Brazil. J Water Health 6(4):527–532. https://doi.org/10.2166/wh.2008.065

    Article  Google Scholar 

  33. Fayer R, Trout JM, Lewis EJ et al (2003) Contamination of Atlantic coast commercial shellfish with Cryptosporidium. Parasitol Res 89(2):141–145. https://doi.org/10.1007/s00436-002-0734-0

    Article  CAS  PubMed  Google Scholar 

  34. Schets FM, van den Berg HHJL, Engels GB et al (2007) Cryptosporidium and Giardia in commercial and non-commercial oysters (Crassostrea gigas) and water from the Oosterschelde, The Netherlands. Int J Food Microbiol 113(2):189–194. https://doi.org/10.1016/j.ijfoodmicro.2006.06.031

  35. Miller WA, Miller MA, Gardner IA et al (2005) New genotypes and factors associated with Cryptosporidium detection in mussels (Mytilus spp.) along the California coast. Int J Parasitol 35(10):1103–1113. https://doi.org/10.1016/j.ijpara.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  36. Graczyk TK, Lewis EJ, Glass G et al (2007) Quantitative assessment of viable Cryptosporidium parvum load in commercial oysters (Crassostrea virginica) in the Chesapeake Bay. Parasitol Res 100:247. https://doi.org/10.1007/s00436-006-0261-5

    Article  PubMed  Google Scholar 

  37. Li X, Guyot K, Dei-Cas E et al (2006) Cryptosporidium oocysts in mussels (Mytilus edulis) from Normandy (France). Int J Food Microbiol 108(3):321–325. https://doi.org/10.1016/j.ijfoodmicro.2005.11.018

  38. Robertson LJ, Gjerde B (2008) Development and use of a pepsin digestion method for analysis of shellfish for Cryptosporidium oocysts and Giardia cysts. J Food Prot 71(5):959–966. https://doi.org/10.4315/0362-028x-71.5.959

    Article  CAS  PubMed  Google Scholar 

  39. Schets FM, van den Berg HHJL, de Roda Husman AM (2013) Determination of the recovery efficiency of Cryptosporidium oocysts and Giardia cysts from seeded bivalve mollusks. J Food Prot 76(1):93–98. https://doi.org/10.4315/0362-028X.JFP-12-326

    Article  PubMed  Google Scholar 

  40. Tei FF, Kowalyk S, Reid JA et al (2016) Assessment and molecular characterization of human intestinal parasites in bivalves from Orchard Beach, NY, USA. Int J Environ Res Public Health 13(4):381. https://doi.org/10.3390/ijerph13040381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fayer R, Trout J, Lewis EJ et al (2002) Temporal variability of Cryptosporidium in the Chesapeake Bay. Parasitol Res 88(11):998–1003. https://doi.org/10.1007/s00436-002-0697-1

    Article  CAS  PubMed  Google Scholar 

  42. EPA United Stated Environmental Protection Agency (2005) Method 1623.1: Cryptosporidium and Giardia in water by filtration/IMS/FA. https://www.epa.gov/sites/production/files/2015-07/documents/epa-1623.pdf. Accessed 21 Sep 2020

  43. ISO International Organization for Standardization (2006) ISO 15553:2006. Water quality - isolation and identification of Cryptosporidium oocysts and Giardia cysts from water. https://www.iso.org/standard/39804.html. Accessed 21 Sep 2020

  44. Ware MW, Wymer L, Lindquist HDA et al (2003) Evaluation of an alternative IMS dissociation procedure for use with method 1622: detection of Cryptosporidium in water. J Microbiol Methods 55(3):575–583. https://doi.org/10.1016/j.mimet.2003.06.001

    Article  PubMed  Google Scholar 

  45. Manore AJW, Harper SL, Aguilar B et al (2019) Comparison of freeze-thaw cycles for nucleic acid extraction and molecular detection of Cryptosporidium parvum and Toxoplasma gondii oocysts in environmental matrices. J Microbiol Methods 156:1–4. https://doi.org/10.1016/j.mimet.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  46. Hopkins RM, Meloni BP, Groth DM et al (1997) Ribosomal RNA sequencing reveals differences between the genotypes of Giardia isolates recovered from humans and dogs living in the same locality. J Parasitol 83(1):44–51

    Article  CAS  Google Scholar 

  47. Appelbee AJ, Frederick LM, Heitman TL et al (2003) Prevalence and genoty** of Giardia duodenalis from beef calves in Alberta, Canada. Vet Parasitol 112(4):289–294. https://doi.org/10.1016/s0304-4017(02)00422-3

    Article  CAS  PubMed  Google Scholar 

  48. Lalle M, Pozio E, Capelli G et al (2005) Genetic heterogeneity at the beta-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. Int J Parasitol 35(2):207–213. https://doi.org/10.1016/j.ijpara.2004.10.022

    Article  CAS  PubMed  Google Scholar 

  49. Cacciò SM, de Giacomo M, Pozio E (2002) Sequence analysis of the β-giardin gene and development of a polymerase chain reaction-restriction fragment length polymorphism assay to genotype Giardia duodenalis cysts from human faecal samples. Int J Parasitol 32(8):1023–1030

    Article  Google Scholar 

  50. Sulaiman IM, Fayer R, Bern C et al (2003) Triosephosphate isomerase gene characterization and potential zoonotic transmission of giardia duodenalis. Emerg Infect Dis 9(11):1444–1452. https://doi.org/10.3201/eid0911.030084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Read CM, Monis PT, Andrew Thompson RC (2004) Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infect Genet Evol 4(2):125–130. https://doi.org/10.1016/j.meegid.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  52. Santín M, Trout JM, Vecino JAC et al (2006) Cryptosporidium, Giardia and Enterocytozoon bieneusi in cats from Bogota (Colombia) and genoty** of isolates. Vet Parasitol 141(3–4):334–339. https://doi.org/10.1016/j.vetpar.2006.06.004

  53. Silva SOS, Richtzenhain LJ, Barros IN et al (2013) A new set of primers directed to 18S rRNA gene for molecular identification of Cryptosporidium spp. and their performance in the detection and differentiation of oocysts shed by synanthropic rodents. Exp Parasitol 135(3):551–557. https://doi.org/10.1016/j.exppara.2013.09.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Averaldo Guiguet Leal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leal, D.A.G., Bonatti, T.R., de Lima, R., Barbosa, R.L., Franco, R.M.B. (2021). Detection of Giardia Cysts and Cryptosporidium Oocysts in Edible Shellfish: Choosing a Target. In: Magnani, M. (eds) Detection and Enumeration of Bacteria, Yeast, Viruses, and Protozoan in Foods and Freshwater. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1932-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1932-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1931-5

  • Online ISBN: 978-1-0716-1932-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation