Construction of Human Cytomegalovirus Mutants with Markerless BAC Mutagenesis

  • Protocol
  • First Online:
Human Cytomegaloviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2244))

Abstract

To fully understand the function of cytomegalovirus (CMV) genes, it is imperative that they are studied in the context of infection. Therefore, the targeted deletion of individual viral genes and the comparison of these loss-of-function viral mutants to the wild-type virus allow for the identification of the relevance and role for a particular gene in the viral replication cycle. Targeted CMV mutagenesis has made huge advances over the past 20 years. The cloning of CMV genomes into Escherichia coli as bacterial artificial chromosomes (BAC) allows for not only quick and efficient deletion of viral genomic regions, individual genes, or single-nucleotide exchanges in the viral genome but also the insertion of heterologous genetic sequences for gain-of-function approaches. The conceptual advantage of this strategy is that it overcomes the restrictions of recombinant technologies in cell culture systems. Namely, recombination in infected cells occurs only in a few clones, and their selection is not possible if the targeted genes are relevant for virus replication and are not able to compete for growth against the unrecombined parental viruses. On the other hand, BAC mutagenesis enables the selection for antibiotic resistance in E. coli, providing selective growth advantage to the recombined genomes and thus clonal selection of viruses with even extremely poor fitness. Here we describe the methods used for the generation of a CMV BAC, targeted mutagenesis of BAC clones, and transfection of human cells with CMV BAC DNA in order to reconstitute the viral infection process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 176.54
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spaete RR, Mocarski ES (1987) Insertion and deletion mutagenesis of the human cytomegalovirus genome. Proc Natl Acad Sci U S A 84:7213–7217

    Article  CAS  Google Scholar 

  2. Chee MS, Bankier AT, Beck S, Bohni R, Brown CM, Cerny R, Horsnell T, Hutchison CA 3rd, Kouzarides T, Martignetti JA et al (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154:125–169

    CAS  PubMed  Google Scholar 

  3. Murphy E, Rigoutsos I, Shibuya T, Shenk TE (2003) Reevaluation of human cytomegalovirus coding potential. Proc Natl Acad Sci U S A 100:13585–13590

    Article  CAS  Google Scholar 

  4. Davison AJ, Dolan A, Akter P, Addison C, Dargan DJ, Alcendor DJ, McGeoch DJ, Hayward GS (2003) The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84:17–28

    Article  CAS  Google Scholar 

  5. Dargan DJ, Douglas E, Cunningham C, Jamieson F, Stanton RJ, Baluchova K, McSharry BP, Tomasec P, Emery VC, Percivalle E, Sarasini A, Gerna G, Wilkinson GW, Davison AJ (2010) Sequential mutations associated with adaptation of human cytomegalovirus to growth in cell culture. J Gen Virol 91:1535–1546

    Article  CAS  Google Scholar 

  6. Sinzger C, Schmidt K, Knapp J, Kahl M, Beck R, Waldman J, Hebart H, Einsele H, Jahn G (1999) Modification of human cytomegalovirus tropism through propagation in vitro is associated with changes in the viral genome. J Gen Virol 80(Pt 11):2867–2877

    Article  CAS  Google Scholar 

  7. Murrell I, Wilkie GS, Davison AJ, Statkute E, Fielding CA, Tomasec P, Wilkinson GW, Stanton RJ (2016) Genetic stability of bacterial artificial chromosome-derived human cytomegalovirus during culture in vitro. J Virol 90:3929–3943

    Article  CAS  Google Scholar 

  8. Borst EM, Hahn G, Koszinowski UH, Messerle M (1999) Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J Virol 73:8320–8329

    Article  CAS  Google Scholar 

  9. Hahn G, Rose D, Wagner M, Rhiel S, McVoy MA (2003) Cloning of the genomes of human cytomegalovirus strains Toledo, TownevarRIT3, and Towne long as BACs and site-directed mutagenesis using a PCR-based technique. Virology 307:164–177

    Article  CAS  Google Scholar 

  10. Marchini A, Liu H, Zhu H (2001) Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J Virol 75:1870–1878

    Article  CAS  Google Scholar 

  11. Hahn G, Khan H, Baldanti F, Koszinowski UH, Revello MG, Gerna G (2002) The human cytomegalovirus ribonucleotide reductase homolog UL45 is dispensable for growth in endothelial cells, as determined by a BAC-cloned clinical isolate of human cytomegalovirus with preserved wild-type characteristics. J Virol 76:9551–9555

    Article  CAS  Google Scholar 

  12. Sinzger C, Hahn G, Digel M, Katona R, Sampaio KL, Messerle M, Hengel H, Koszinowski U, Brune W, Adler B (2008) Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89:359–368

    Article  CAS  Google Scholar 

  13. Murphy E, Yu D, Grimwood J, Schmutz J, Dickson M, Jarvis MA, Hahn G, Nelson JA, Myers RM, Shenk TE (2003) Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci U S A 100:14976–14981

    Article  CAS  Google Scholar 

  14. Stanton RJ, Baluchova K, Dargan DJ, Cunningham C, Sheehy O, Seirafian S, McSharry BP, Neale ML, Davies JA, Tomasec P, Davison AJ, Wilkinson GW (2010) Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest 120:3191–3208

    Article  CAS  Google Scholar 

  15. Tischer BK, Smith GA, Osterrieder N (2010) En passant mutagenesis: a two step markerless red recombination system. Methods Mol Biol 634:421–430

    Article  CAS  Google Scholar 

  16. Stone NE, Fan JB, Willour V, Pennacchio LA, Warrington JA, Hu A, de la Chapelle A, Lehesjoki AE, Cox DR, Myers RM (1996) Construction of a 750-kb bacterial clone contig and restriction map in the region of human chromosome 21 containing the progressive myoclonus epilepsy gene. Genome Res 6:218–225

    Article  CAS  Google Scholar 

  17. Sampaio KL, Weyell A, Subramanian N, Wu Z, Sinzger C (2017) A TB40/E-derived human cytomegalovirus genome with an intact US-gene region and a self-excisable BAC cassette for immunological research. BioTechniques 63:205–214

    Article  CAS  Google Scholar 

  18. Hammer Q, Ruckert T, Borst EM, Dunst J, Haubner A, Durek P, Heinrich F, Gasparoni G, Babic M, Tomic A, Pietra G, Nienen M, Blau IW, Hofmann J, Na IK, Prinz I, Koenecke C, Hemmati P, Babel N, Arnold R, Walter J, Thurley K, Mashreghi MF, Messerle M, Romagnani C (2018) Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat Immunol 19:453–463

    Article  CAS  Google Scholar 

  19. Sambrook JF, Russel DW (2000) Molecular cloning: a laboratory manual. Cold Spring Harbor laboratory press. Cold Spring Harbor, New York

    Google Scholar 

  20. Borst EMC-M, I.; Messerle, M. (2004) Cloning of β-herpesvirus genomes as bacterial artificial chromosomes. In: Zhao SS, M. (eds) Bacterial artificial chromosomes: volume 2: functional studies vol 256. Humana Press Inc., Totowa, NJ, pp 221–240

    Chapter  Google Scholar 

  21. Tischer BK, von Einem J, Kaufer B, Osterrieder N (2006) Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. BioTechniques 40:191–197

    Article  CAS  Google Scholar 

  22. Mosberg JA, Lajoie MJ, Church GM (2010) Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186:791–799

    Article  CAS  Google Scholar 

  23. Thomason LC, Sawitzke JA, Li X, Costantino N, Court DL (2014) Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol 106:1 16 1–1 1639

    Article  Google Scholar 

  24. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

  25. Yu D, Smith GA, Enquist LW, Shenk T (2002) Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J Virol 76:2316–2328

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luka Čičin-Šain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chaudhry, M.Z., Messerle, M., Čičin-Šain, L. (2021). Construction of Human Cytomegalovirus Mutants with Markerless BAC Mutagenesis. In: Yurochko, A.D. (eds) Human Cytomegaloviruses. Methods in Molecular Biology, vol 2244. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1111-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1111-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1110-4

  • Online ISBN: 978-1-0716-1111-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation