Background of Membrane Lipids

  • Protocol
  • First Online:
Analysis of Membrane Lipids

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 517 Accesses

Abstract

Lipids are a unique group of molecules that universally exist in both prokaryotes and eukaryotes; however, they were least investigated biomolecules owing to their water-insoluble nature. However, this scenario has been changing in the last few decades of intensive research which unraveled diverse roles played by them in a wide variety of biological processes in all spectrum of life. Notwithstanding a common footprint of lipids that exists in most organisms, there are specific lipid molecules, which are characteristic of a system. Coinciding with the development of separation and high-throughput analytical tools, we are able to detect minor lipids which otherwise remained undetected. We now know that each type of phosphoglycerides or sphingolipids is enriched with a host of molecular species imparting additional dynamism to lipid composition. These lipid changes regulate membrane homeostasis, which in turn affects the physiological functions. This chapter provides a background of lipids that are present in biological systems. Since there exists a vast amount of literature on lipid metabolism of various organisms, we will only limit our discussion to yeast systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen Z, Wang L, Qiu S, Ge S (2018) Determination of microalgal lipid content and fatty acid for biofuel production. Biomed Res Int 2018:1503126

    PubMed  PubMed Central  Google Scholar 

  2. Yang K, Cheng H, Gross RW, Han X (2009) Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal Chem 81:4356–4368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106(7):2136–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Casanovas A, Sprenger RR, Tarasov K, Ruckerbauer DE, Hannibal-Bach HK, Zanghellini J, Jensen ON, Ejsing CS (2015) Quantitative analysis of proteome and lipidome dynamics reveals functional regulation of global lipid metabolism. Chem Biol 22(3):412–425

    Article  CAS  PubMed  Google Scholar 

  5. Han X (2016) Lipidomics for studying metabolism. Nat Rev Endocrinol 12(11):668–679

    Article  CAS  PubMed  Google Scholar 

  6. Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19(5):281–296

    Article  CAS  PubMed  Google Scholar 

  7. Singh A, Del Poeta M (2016) Sphingolipidomics: an important mechanistic tool for studying fungal pathogens. Front Microbiol 7:501

    PubMed  PubMed Central  Google Scholar 

  8. de Kroon AIPM (2017) Lipidomics in research on yeast membrane lipid homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 1862(8):797–799

    Article  PubMed  CAS  Google Scholar 

  9. Singh A, Khandelwal NK, Prasad R (2019) Lipidomics approaches: applied to the study of pathogenesis in Candidaspecies. Prog Mol Subcell Biol. 58:195–215

    Article  CAS  PubMed  Google Scholar 

  10. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811(11):637–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wenk MR (2010) Lipidomics: new tools and applications. Cell 143(6):888–895

    Article  CAS  PubMed  Google Scholar 

  13. Singh A, Prasad T, Kapoor K, Mandal A, Roth M, Welti R, Prasad R (2010) Phospholipidome of Candida: each species of Candida has distinctive phospholipid molecular species. OMICS 14(6):665–677

    Article  CAS  PubMed  Google Scholar 

  14. Singh A, Prasad R (2011) Comparative lipidomics of azole sensitive and resistant clinical isolates of Candida albicans reveals unexpected diversity in molecular lipid imprints. PLoS One 6(4):e19266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh A, Yadav V, Prasad R (2012) Comparative lipidomics in clinical isolates of Candida albicans reveal crosstalk between mitochondria, cell wall integrity and azole resistance. PLoS One 7(6):e39812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zinser E, Daum G (1995) Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast 11(6):493–536

    Article  CAS  PubMed  Google Scholar 

  17. Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52(4):590–614

    Article  CAS  PubMed  Google Scholar 

  18. Brügger B (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 83:79–98

    Article  PubMed  CAS  Google Scholar 

  19. Del Poeta M, Nimrichter L, Rodrigues ML, Luberto C (2014) Synthesis and biological properties of fungal glucosylceramide. PLoS Pathog 10(1):e1003832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rella A, Farnoud AM, Del Poeta M (2016) Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res 61:63–72

    Article  CAS  PubMed  Google Scholar 

  21. Ikeda M, Kihara A, Igarashi Y (2006) Lipid asymmetry of the eukaryotic plasma membrane: functions and related enzymes. Biol Pharm Bull 29(8):1542–1546

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi T, Menon AK (2018) Transbilayer lipid asymmetry. Curr Biol 28(8):R386–R391

    Article  CAS  PubMed  Google Scholar 

  23. Farnoud AM, Toledo AM, Konopka JB, Del Poeta M, London E (2015) Raft-like membrane domains in pathogenic microorganisms. Curr Top Membr 75:233–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitrofanova D, Dakik P, McAuley M, Medkour Y, Mohammad K, Titorenko VI (2018) Lipid metabolism and transport define longevity of the yeast Saccharomyces cerevisiae. Front Biosci (Landmark Ed) 23:1166–1194

    Article  CAS  Google Scholar 

  25. Lippincott-Schwartz J, Phair RD (2010) Lipids and cholesterol as regulators of traffic in the endomembrane system. Annu Rev Biophys 39:559–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Renne MF, de Kroon AIPM (2018) The role of phospholipid molecular species in determining the physical properties of yeast membranes. FEBS Lett 592:1330–1345

    Article  CAS  PubMed  Google Scholar 

  27. Patton JL, Srinivasan B, Dickson RC, Lester RL (1992) Phenotypes of sphingolipid-dependent strains of Saccharomyces cerevisiae. J Bacteriol 174:7180–7184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jenkins GM, Richards A, Wahl T et al (1997) Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J Biol Chem 272:32566–32572

    Article  CAS  PubMed  Google Scholar 

  29. Cheng J, Park TS, Fischl AS, Ye XS (2001) Cell cycle progression and cell polarity require sphingolipid biosynthesis in Aspergillus nidulans. Mol Cell Biol 21:6198–6209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prasad R, Banerjee A, Shah AH (2017) Resistance to antifungal therapies. Essays Biochem 61:157–166

    Article  PubMed  Google Scholar 

  31. Alim D, Sircaik S, Panwar LS (2018) The significance of lipids to biofilm formation in Candida albicans: an emerging perspective. J Fungi (Basel) 4(4):E140

    Article  CAS  Google Scholar 

  32. Singh A, Del Poeta M (2011) Lipid signalling in pathogenic fungi. Cell Microbiol 13:177–185

    Article  CAS  PubMed  Google Scholar 

  33. Noverr MC, Phare SM, Toews GB et al (2001) Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect Immun 69:2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nissen HP, Kreysel HW (1990) The use of HPLC for the determination of lipids in biological materials. Chromatographia 30(11–12):686–690

    Article  CAS  Google Scholar 

  35. Fuchs B, Süss R, Teuber K, Eibisch M, Schiller J (2011) Lipid analysis by thin-layer chromatography--a review of the current state. J Chromatogr A 1218(19):2754–2774

    Article  CAS  PubMed  Google Scholar 

  36. Fisk HL, West AL, Childs CE, Burdge GC, Calder PC (2014) The use of gas chromatography to analyze compositional changes of fatty acids in rat liver tissue during pregnancy. J Vis Exp. 85:51445

    Google Scholar 

  37. Han X, Gross RW (1994) Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A 91(22):10635–10639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones EE, Dworski S, Canals D, Casas J, Fabrias G, Schoenling D, Levade T, Denlinger C, Hannun YA, Medin JA, Drake RR (2014) On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal Chem 86(16):8303–8311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shaner RL, Allegood JC, Park H, Wang E, Kelly S, Haynes CA, Sullards MC, Merrill AH Jr (2009) Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J Lipid Res 50(8):1692–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun Q, Gu J, Stolze BR, Soldin SJ (2018) Atmospheric pressure chemical ionization is a suboptimal ionization source for steroids. Clin Chem 64(6):974–976

    Article  CAS  PubMed  Google Scholar 

  41. Singh A, MacKenzie A, Girnun G, Del Poeta M (2017) Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcusstrains. J Lipid Res 58(10):2017–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee HC, Forte JG (1979) Asymmetric labeling of amino lipids in liposomes. Biochim Biophys Acta 554(2):375–387

    Article  CAS  PubMed  Google Scholar 

  43. Chazotte B (2011) Labeling membranes with fluorescent phosphatidylethanolamine. Cold Spring Harb Protoc. 2011(5). https://doi.org/10.1101/pdb.prot5621

  44. Amaro M, Filipe HA, Prates Ramalho JP, Hof M, Loura LM (2016) Fluorescence of nitrobenzoxadiazole (NBD)-labeled lipids in model membranes is connected not to lipid mobility but to probe location. Phys Chem Chem Phys 18(10):7042–7054

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank grants to RP from DBT No. BT/01/CEIB/10/III/02, BT/PR7392/MED/29/652/2012 and BT/PR14117/BRB/10/1420/2015. We thank financial assistance to AS from ICMR No. 52/08/2019-BMS and University of Lucknow, Lucknow. AS thanks Amity University, Haryana for inviting for a mini sabbatical and support therein. AB acknowledges the financial support from SERB Grant no. SRG/2019/000514.

Financial and Competing Interest Disclosure

There is no financial and competing interest.

Contribution to the Manuscript

RP, AB, AK, and AS wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashutosh Singh or Rajendra Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, A., Banerjee, A., Singh, A., Prasad, R. (2020). Background of Membrane Lipids. In: Prasad, R., Singh, A. (eds) Analysis of Membrane Lipids. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0631-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0631-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-0630-8

  • Online ISBN: 978-1-0716-0631-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation