Polymer Optical Fiber for Smart Textiles

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Smart Textiles

Abstract

Polymer optical fiber has significant advantages, including flexibility, durability, lightweight, biocompatibility, and electromagnetic interference immunity. It can not only be used as a single sensor probe but also be integrated into fabric as smart textiles. This chapter presents a review on structures, types, materials, and physical properties of POF; current technologies applied in POF sensors; applications of POF sensor; and POF in textiles. Finally, the current issues in this area are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartlett RJ, Chandy RP, Eldridge P, Merchant DF, Morgan R, Scully PJ (2000) Plastic optical fibre sensors and devices. Trans Inst Meas Control 22:431–457

    Article  Google Scholar 

  2. van Eijkelenborg MA, Argyros A, Bachmann A, Barton G, Large MCJ, Henry G, Issa NA, Klein KF, Poisel H, Pok W, Poladian L, Manos S, Zagari J (2004) Bandwidth and loss measurements of graded-index microstructured polymer optical fibre. Electron Lett 40:592–593

    Article  Google Scholar 

  3. http://www.agc.com/english/chemicals/shinsei/cytop/about.html

  4. Rothmaier M, Luong M, Clemens F (2008) Textile pressure sensor made of flexible plastic optical fibers. Sensors 8:4318–4329

    Article  Google Scholar 

  5. Nikolov ID, Ivanov CD (2000) Optical plastic refractive measurements in the visible and the near-infrared regions. Appl Optics 39:2067–2070

    Article  Google Scholar 

  6. Khanarian G, Celanese H (2001) Optical properties of cyclic olefin copolymers. Opt Eng 40:1024–1029

    Article  Google Scholar 

  7. Peters K (2011) Polymer optical fiber sensors – a review. Smart Mater Struct 20:013002

    Article  Google Scholar 

  8. Yang DX, Yu J, Tao X, Tam H (2004) Structural and mechanical properties of polymeric optical fiber. Mater Sci Eng A 364:256–259

    Article  Google Scholar 

  9. Chen YC, Chen LW, Lu WH (2011) Power loss characteristics of a sensing element based on a polymer optical fiber under cyclic tensile elongation. Sensors 11:8741–8750

    Article  Google Scholar 

  10. Ishigure T, Hirai M, Sato M, Koike Y (2004) Graded-index plastic optical fiber with high mechanical properties enabling easy network installations – I. J Appl Polym Sci 91:404–409

    Article  Google Scholar 

  11. Jiang C, Kuzyk MG, Ding J-L, Johns WE, Welker DJ (2002) Fabrication and mechanical behavior of dye-doped polymer optical fiber. J Appl Phys 92:4–12

    Article  Google Scholar 

  12. Kiesel S, Peters K, Hassan T, Kowalsky M (2007) Behaviour of intrinsic polymer optical fibre sensor for large-strain applications. Meas Sci Technol 18:3144–3154

    Article  Google Scholar 

  13. Linec M, Donlagic D (2007) A plastic optical fiber microbend sensor used as a low-cost anti-squeeze detector. IEEE Sensors J 7:1262–1267

    Article  Google Scholar 

  14. Vijayan A, Gawli S, Kulkarni A, Karekar RN, Aiyer RC (2008) An optical fiber weighing sensor based on bending. Meas Sci Technol 19:105302

    Article  Google Scholar 

  15. Kuang KSC, Quek ST, Maalej M (2004) Assessment of an extrinsic polymer-based optical fibre sensor for structural health monitoring. Meas Sci Technol 15:2133–2141

    Article  Google Scholar 

  16. Binu S, Mahadevan Pillai VP, Pradeepkumar V, Padhy BB, Joseph CS, Chandrasekaran N (2009) Fibre optic glucose sensor. Mater Sci Eng C 29:183–186

    Article  Google Scholar 

  17. Nobuo T (2002) Characterization of microscopic damage in composite laminates and real-time monitoring by embedded optical fiber sensors. Int J Fatigue 24:281–289

    Article  Google Scholar 

  18. Babchenko A, Maryles J (2007) A sensing element based on 3D imperfected polymer optical fibre. J Opt A Pure Appl Opt 9:1–5

    Article  Google Scholar 

  19. Kuang KSC, Cantwell WJ (2003) The use of plastic optical fibre sensors for monitoring the dynamic response of fibre composite beams. Meas Sci Technol 14:736–745

    Article  Google Scholar 

  20. Chen YC, **e WF, Ke YL, Chen LW (2008) Power loss characteristics of a sensing element based on a grooved polymer optical fiber under elongation. Meas Sci Technol 19:105203

    Article  Google Scholar 

  21. Fu Y, Di H, Liu R (2010) Light intensity modulation fiber-optic sensor for curvature measurement. Optics Laser Technol 42:594–599

    Article  Google Scholar 

  22. Irawan R, Chuan TS, Meng TC, Ming TK (2008) Rapid constructions of microstructures for optical fiber sensors using a commercial CO2 laser system. Open Biomed Eng J 2:28–35

    Article  Google Scholar 

  23. Pulido C, Esteban Ó (2010) Improved fluorescence signal with tapered polymer optical fibers under side-illumination. Sens Actuators B 146:190–194

    Article  Google Scholar 

  24. Gravina R, Testa G, Bernini R (2009) Perfluorinated plastic optical fiber tapers for evanescent wave sensing. Sensors 9:10423–10433

    Article  Google Scholar 

  25. Babchenko A, Maryles J (2007) Graded-index plastic optical fiber for deformation sensing. Opt Lasers Eng 45:757–760

    Article  Google Scholar 

  26. Armin A, Soltanolkotabi M, Feizollah P (2011) On the pH and concentration response of an evanescent field absorption sensor using a coiled-shape plastic optical fiber. Sens Actuators A 165:181–184

    Article  Google Scholar 

  27. Binu S, George J (2013) Displacement sensing with polymer fibre optic probe. Front Sens 1:49–53

    Google Scholar 

  28. Zhi Feng Z, Chi Z, **ao-Ming T, Guang-Feng W, Gang-Ding P (2010) Inscription of polymer optical fiber bragg grating at 962 nm and its potential in strain sensing. IEEE Photon Technol Lett 22:1562–1564

    Article  Google Scholar 

  29. Cheng X, Qiu W, Wu W, Luo Y, Tian X, Zhang Q, Zhu B (2011) High-sensitivity temperature sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber. Chin Opt Lett 9:020602

    Article  Google Scholar 

  30. Muto S, Suzuki O, Amano T, Morisawa M (2003) A plastic optical fibre sensor for real-time humidity monitoring. Meas Sci Technol 14:746

    Article  Google Scholar 

  31. Chu C-S, Lo Y-L (2008) A plastic optical fiber sensor for the dual sensing of temperature and oxygen. IEEE Photon Technol Lett 20:63–65

    Article  Google Scholar 

  32. Zubia J, Garitaonaindia G, Arrúe J (2000) Passive device based on plastic optical fibers to determine the indices of refraction of liquids. Appl Optics 39:941–946

    Article  Google Scholar 

  33. Lomer M, Arrue J, Jauregui C, Aiestaran P, Zubia J, López-Higuera J (2007) Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor. Sens Actuators A 137:68–73

    Article  Google Scholar 

  34. Yang XH, Wang LL (2007) Fluorescence pH probe based on microstructured polymer optical fiber. Opt Express 15:16478–16483

    Article  Google Scholar 

  35. Esteban Ó, Pulido C (2013) Simple oxygen gas sensor based on side-illuminated polymer optical fiber. In: Proceedings of SPIE 8794, fifth European workshop on optical fibre sensors, p 879410. http://proceedings.spiedigitallibrary.org/mobile/proceeding.aspx?articleid=1690526

  36. Jensen JB, Emiliyanov G, Bang O, Hoiby PE, Pedersen LH, Hansen TP, Nielsen K, Bjarklev A (2006) Microstructured polymer optical fiber biosensors for detection of DNA and antibodies. In: Optical fiber sensors, Cancun, OSA technical digest, p ThA2. http://www.opticsinfobase.org/abstract.cfm?uri=ofs-2006-tha2

  37. Jiang J, Gao L, Zhong W, Meng S, Yong B, Song Y, Wang X, Bai C (2008) Development of fiber optic fluorescence oxygen sensor in both in vitro and in vivo systems. Respir Physiol Neurobiol 161:160–166

    Article  Google Scholar 

  38. Tang L, Cha Y, Li H, Chen P, Lin S (2006) Fiber-optic immuno-biosensor for rapid and accurate detection of nerve growth factor in human blood. In: Engineering in Medicine and Biology Society, EMBS ‘06. 28th annual international conference of the IEEE, vol 1, pp 811–814. http://www.ncbi.nlm.nih.gov/pubmed/17946002

  39. Myllylä TS, Elseoud AA, Sorvoja HS, Myllylä RA, Harja JM, Nikkinen J, Tervonen O, Kiviniemi V (2011) Fibre optic sensor for non-invasive monitoring of blood pressure during MRI scanning. J Biophotonics 4:98–107

    Article  Google Scholar 

  40. Vegfors M, Lindberg L-G, Pettersson H, Öberg PA (1994) Presentation and evaluation of a new optical sensor for respiratory rate monitoring. Int J Clin Monit Comput 11:151–156

    Article  Google Scholar 

  41. Cheng X, Liu L, Tam WK., Tao X, Wong WW, Yu J (2007) Photonic fabric display with controlled pattern, color, luminescence intensity, scattering intensity and light self-amplification. USA Patent No.: US 7,466,896, B2

    Google Scholar 

  42. Tao X (2005) Wearable electronics and photonics. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  43. Wilson JD, Adams AJ, Murphy P, Eswaran H, Preissl H (2009) Design of a light stimulator for fetal and neonatal magnetoencephalography. Physiol Meas 30:N1

    Article  Google Scholar 

  44. www.lumitex.com

  45. Tao X, Zheng W, Zhang Z, Lau H, Lee L (2014) Phototherapy textile wrapper. USA Patent application No.: 14/534,153

    Google Scholar 

  46. Zhihao C, Teng TJ, Huat NS, **ufeng Y (2012) Plastic optical fiber microbend sensor used as breathing sensor. In: Sensors, 2012 IEEE, Taipei, pp 1–4. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6411048&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6411048

  47. Grillet A, Kinet D, Witt J, Schukar M, Krebber K, Pirotte F, Depré A (2008) Optical fiber sensors embedded into medical textiles for healthcare monitoring. IEEE Sensors J 8:1215–1222

    Article  Google Scholar 

  48. Zheng W, Tao X, Zhu B, Wang G, Hui C (2014) Fabrication and evaluation of a notched polymer optical fiber fabric strain sensor and its application in human respiration monitoring. Tex Res J 84:1791–1802

    Article  Google Scholar 

  49. Jonckheere JD, Narbonneau F, Jeanne M, Kinet D, Witt J, Krebber K, Paquet B, Depré A, Logier R (2009) OFSETH: smart medical textile for continuous monitoring of respiratory motions under magnetic resonance imaging. In: 31st annual international conference of the IEEE, Minneapolis, pp 1473–1476. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5332432&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5332432

  50. Yoo WJ, Jang KW, Seo JK, Heo JY, Moon JS, Park JY, Lee BS (2010) Development of respiration sensors using plastic optical fiber for respiratory monitoring inside MRI system. J Opt Soc Korea 14:235–239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Wei, Z. (2016). Polymer Optical Fiber for Smart Textiles. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-68-0_23-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-68-0_23-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4451-68-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Polymer Optical Fiber for Smart Textiles
    Published:
    19 April 2016

    DOI: https://doi.org/10.1007/978-981-4451-68-0_23-2

  2. Original

    Polymer Optical Fiber for Smart Textiles
    Published:
    16 February 2015

    DOI: https://doi.org/10.1007/978-981-4451-68-0_23-1

Navigation