Preclinical Models in Colorectal Cancer Drug Discovery

  • Living reference work entry
  • First Online:
Handbook of Animal Models and its Uses in Cancer Research

Abstract

Currently, colorectal cancer (CRC) remains one of the most common causes of cancer-related death worldwide despite advances in medical therapies of CRC. Therefore, appropriate animal models of CRC are urgently needed to help understand the pathophysiological mechanism of CRC, develop new drugs, and evaluate the efficacy of new drugs at the preclinical level. At present, CRC animal models mainly include carcinogen-induced models, transplant models, and transgenic animal models. The selection of suitable modeling animals and corresponding modeling methods is the key for the success of CRC drug discovery, depending on factors such as experimental purpose, experimental cycle, and experimental technology. Here, this article reviews the pros and cons and research progress of different animal models in CRC, providing ideas and methods for further research on CRC drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Blunt T, Gell D, Fox M, Taccioli GE, Lehmann AR, Jackson SP, Jeggo PA (1996) Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci U S A 93(19):10285–10290

    Article  CAS  Google Scholar 

  • Chartier LC, Howarth GS, Lawrance IC, Trinder D, Barker SJ, Mashtoub S (2018) Emu oil improves clinical indicators of disease in a mouse model of colitis-associated colorectal cancer. Dig Dis Sci 63(1):135–145. https://doi.org/10.1007/s10620-017-4876-4

    Article  PubMed  Google Scholar 

  • Clapper ML, Cooper HS, Chang W-CL (2007) Dextran sulfate sodium-induced colitis-associated neoplasia: a promising model for the development of chemopreventive interventions. Acta Pharmacol Sin 28(9):1450–1459

    Article  CAS  Google Scholar 

  • de Jong GM, Aarts F, Hendriks T, Boerman OC, Bleichrodt RP (2009) Animal models for liver metastases of colorectal cancer: research review of preclinical studies in rodents. J Surg Res 154(1):167–176. https://doi.org/10.1016/j.jss.2008.03.038

    Article  PubMed  Google Scholar 

  • de Wind N, Dekker M, Berns A, Radman M, te Riele H (1995) Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82(2):321–330

    Article  Google Scholar 

  • Goto T (2020) Patient-derived tumor xenograft models: toward the establishment of precision cancer medicine. J Pers Med 10(3). https://doi.org/10.3390/jpm10030064

  • Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, Roman-Roman S, Seoane J, Trusolino L, Villanueva A (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4(9). https://doi.org/10.1158/2159-8290.CD-14-0001

  • Hite N, Klinger A, Hellmers L, Maresh GA, Miller PE, Zhang X, Li L, Margolin DA (2018) An optimal Orthotopic mouse model for human colorectal cancer primary tumor growth and spontaneous metastasis. Dis Colon Rectum 61(6):698–705. https://doi.org/10.1097/DCR.0000000000001096

    Article  PubMed  Google Scholar 

  • Hou P, Shi P, Jiang T, Yin H, Chu S, Shi M, Bai J, Song J (2020) DKC1 enhances angiogenesis by promoting HIF-1α transcription and facilitates metastasis in colorectal cancer. Br J Cancer 122(5):668–679. https://doi.org/10.1038/s41416-019-0695-z

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Piao D, Zhu A, Jiang H (2014) Changes in T lymphocyte subsets in mice with CT26 colon tumors after treatment with donor lymphocyte infusion. Tumour Biol J Int Soc Oncodevelop Biol Med 35(6):5599–5605. https://doi.org/10.1007/s13277-014-1740-4

    Article  CAS  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715. https://doi.org/10.1038/nrd1470

    Article  CAS  PubMed  Google Scholar 

  • Kuo TH, Kubota T, Watanabe M, Furukawa T, Teramoto T, Ishibiki K, Kitajima M, Moossa AR, Penman S, Hoffman RM (1995) Liver colonization competence governs colon cancer metastasis. Proc Natl Acad Sci U S A 92(26):12085–12089

    Article  CAS  Google Scholar 

  • Lenoir M, Del Carmen S, Cortes-Perez NG, Lozano-Ojalvo D, Muñoz-Provencio D, Chain F, Langella P, de Moreno de LeBlanc A, LeBlanc JG, Bermúdez-Humarán LG (2016) Lactobacillus casei BL23 regulates Treg and Th17 T-cell populations and reduces DMH-associated colorectal cancer. J Gastroenterol 51(9):862–873. https://doi.org/10.1007/s00535-015-1158-9

    Article  CAS  PubMed  Google Scholar 

  • Liao H-W, Hung M-C (2017) Intracaecal orthotopic colorectal cancer xenograft mouse model. Bio Protoc 7(11). https://doi.org/10.21769/BioProtoc.2311

  • Lippert E, Ruemmele P, Obermeier F, Goelder S, Kunst C, Rogler G, Dunger N, Messmann H, Hartmann A, Endlicher E (2017) Anthocyanins prevent colorectal cancer development in a mouse model. Digestion 95(4):275–280. https://doi.org/10.1159/000475524

    Article  CAS  PubMed  Google Scholar 

  • Morimoto-Tomita M, Ohashi Y, Matsubara A, Tsuiji M, Irimura T (2005) Mouse colon carcinoma cells established for high incidence of experimental hepatic metastasis exhibit accelerated and anchorage-independent growth. Clin Exp Metastasis 22(6):513–521

    Article  Google Scholar 

  • Neufert C, Becker C, Neurath MF (2007) An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc 2(8):1998–2004

    Article  CAS  Google Scholar 

  • Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284. https://doi.org/10.1038/nrc2622

    Article  CAS  PubMed  Google Scholar 

  • Pussila M, Sarantaus L, Dermadi Bebek D, Valo S, Reyhani N, Ollila S, Päivärinta E, Peltomäki P, Mutanen M, Nyström M (2013) Cancer-predicting gene expression changes in colonic mucosa of Western diet fed Mlh1+/− mice. PLoS One 8(10):e76865. https://doi.org/10.1371/journal.pone.0076865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramzy GM, Koessler T, Ducrey E, McKee T, Ris F, Buchs N, Rubbia-Brandt L, Dietrich P-Y, Nowak-Sliwinska P (2020) Patient-derived in vitro models for drug discovery in colorectal carcinoma. Cancers 12(6). https://doi.org/10.3390/cancers12061423

  • Reitmair AH, Redston M, Cai JC, Chuang TC, Bjerknes M, Cheng H, Hay K, Gallinger S, Bapat B, Mak TW (1996) Spontaneous intestinal carcinomas and skin neoplasms in Msh2-deficient mice. Cancer Res 56(16):3842–3849

    CAS  PubMed  Google Scholar 

  • Rizzo G, Bertotti A, Leto SM, Vetrano S (2021) Patient-derived tumor models: a more suitable tool for pre-clinical studies in colorectal cancer. J Experiment Clin Cancer Res 40(1):178. https://doi.org/10.1186/s13046-021-01970-2

    Article  Google Scholar 

  • Robanus-Maandag EC, Koelink PJ, Breukel C, Salvatori DCF, Jagmohan-Changur SC, Bosch CAJ, Verspaget HW, Devilee P, Fodde R, Smits R (2010) A new conditional Apc-mutant mouse model for colorectal cancer. Carcinogenesis 31(5):946–952. https://doi.org/10.1093/carcin/bgq046

    Article  CAS  PubMed  Google Scholar 

  • Rustgi AK (2013) BRAF: a driver of the serrated pathway in colon cancer. Cancer Cell 24(1):1–2. https://doi.org/10.1016/j.ccr.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  • Schlander M, Hernandez-Villafuerte K, Cheng C-Y, Mestre-Ferrandiz J, Baumann M (2021) How much does it cost to research and develop a new drug? Systemat Rev Assess Pharmacoecon. https://doi.org/10.1007/s40273-021-01065-y

  • Siolas D, Hannon GJ (2013) Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res 73(17):5315–5319. https://doi.org/10.1158/0008-5472.CAN-13-1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Yang L, Han Z, Wu X, Li R, Zhou L, Liu N, Sui H, Cai J, Wang Y, Ji Q, Li Q (2020) Tanshinone IIA inhibits epithelial-to-mesenchymal transition through hindering β-arrestin1 mediated β-catenin signaling pathway in colorectal cancer. Front Pharmacol 11:586616. https://doi.org/10.3389/fphar.2020.586616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Kinzler K, Vogelstein B, Preisinger A, Moser A, Luongo C, Gould K, Dove W (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science (New York, NY) 256(5057):668–670. https://doi.org/10.1126/science.1350108

    Article  CAS  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. https://doi.org/10.3322/caac.21660

  • Talmadge JE, Singh RK, Fidler IJ, Raz A (2007) Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170(3):793–804

    Article  CAS  Google Scholar 

  • Ulger H, Ertekin T, Karaca O, Canoz O, Nisari M, Unur E, Elmalı F (2013) Influence of gilaburu (Viburnum opulus) juice on 1,2-dimethylhydrazine (DMH)-induced colon cancer. Toxicol Ind Health 29(9):824–829. https://doi.org/10.1177/0748233712445049

    Article  PubMed  Google Scholar 

  • Venkatachalam K, Gunasekaran S, Namasivayam N (2016) Biochemical and molecular mechanisms underlying the chemopreventive efficacy of rosmarinic acid in a rat colon cancer. Eur J Pharmacol 791:37–50. https://doi.org/10.1016/j.ejphar.2016.07.051

    Article  CAS  PubMed  Google Scholar 

  • Vinothkumar R, Vinoth Kumar R, Karthikkumar V, Viswanathan P, Kabalimoorthy J, Nalini N (2014) Oral supplementation with troxerutin (trihydroxyethylrutin), modulates lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Environ Toxicol Pharmacol 37(1):174–184. https://doi.org/10.1016/j.etap.2013.11.022

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Wong KE, Zhang Z, Dougherty U, Mustafi R, Kong J, Deb DK, Zheng H, Bissonnette M, Li YC (2012) Inactivation of the vitamin D receptor in APC(min/+) mice reveals a critical role for the vitamin D receptor in intestinal tumor growth. Int J Cancer 130(1):10–19. https://doi.org/10.1002/ijc.25992

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, Y., Meng, WJ., Wang, ZQ. (2022). Preclinical Models in Colorectal Cancer Drug Discovery. In: Pathak, S., Banerjee, A., Bisgin, A. (eds) Handbook of Animal Models and its Uses in Cancer Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-1282-5_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1282-5_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1282-5

  • Online ISBN: 978-981-19-1282-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation