Femtosecond Laser Direct Writing

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Micro and Nano Fabrication Technology

Part of the book series: Micro/Nano Technologies ((MNT,volume 1))

  • 397 Accesses

Abstract

A laser enables the confinement of optical energy to a limited small space, resulting in a highly controllable processing zone with high fabrication preciseness. Laser direct writing (LDW) is a fabrication method for structures in a laser-irradiated space or a scanned space and includes subtractive, additive, or modification processing. Laser ablation is a typical subtractive process method where material removal occurs at the laser-irradiated area, while laser sintering, photopolymerization, and photoreduction are widely known as additive methods. The femtosecond laser is a powerful tool for highly precise processing of various kinds of materials and realizes exclusive processing technologies. An understanding of the fundamentals is essential to maximize the outcome of femtosecond LDW. In this chapter, femtosecond LDW is described for both subtractive and additive material processing, starting with the fundamentals to understand the processing characteristics. Advantages and capabilities of femtosecond LDW are described with reference to recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilar CA, Lu Y, Mao S, Chen S (2005) Biomaterials 26:7642

    Article  Google Scholar 

  • Anisimov SI, Kapeliovich BL, Perelman TL (1974) JETP 39:375

    Google Scholar 

  • Baldacchini T (ed) (2016) Three-dimensional microfabrication using two-photon polymerization. Elsevier, Oxford

    Google Scholar 

  • Baldacchini T, Pons A-C, Pons J, LaFratta CN, Fourkas JT, Sun Y, Naughton MJ (2005) Opt Express 13:1275

    Article  Google Scholar 

  • Bityurin N, Luk’yanchuk BS, Hong MH, Chong TC (2003) Chem Rev 103:519

    Article  Google Scholar 

  • Blasco E, Müller J, Müller P, Trouillet V, SchÓ§n M, Scherer T, Barner-Kowollik C, Wegener M (2016) Adv Mater 28:3592

    Article  Google Scholar 

  • Chichkov BN, Momma C, Nolte S, von Alvensleben F, Tünnermann A (1996) Appl Phys A Mater Sci Process 63:109

    Article  Google Scholar 

  • Chong TC, Hong MH, Shi LP (2010) Laser Photon Rev 4:123

    Article  Google Scholar 

  • Du D, Liu X, Korn G, Squier J, Mourou G (1994) Appl Phys Lett 64:3071

    Article  Google Scholar 

  • Eaton SM, Zhang H, Herman PR, Yoshino F, Shah L, Bovatsek J, Arai AY (2005) Opt Express 13:4708

    Article  Google Scholar 

  • Eaton SM, Cerullo G, Osellame R (2012) Top Appl Phys 123:3

    Article  Google Scholar 

  • Gattass RR, Mazur E (2008) Nat Photon 2:219

    Article  Google Scholar 

  • Glezer EN, Mazur E (1997) Appl Phys Lett 71:882

    Article  Google Scholar 

  • He G-C, Zheng M-L, Dong X-Z, ** F, Liu J, Duan X-M, Zhao Z-S (2017) Sci Rep 7:41757

    Article  Google Scholar 

  • Kaden L, Matthäus G, Ullsperger T, Engelhardt H, Rettenmayr M, Tünnermann A, Nolte S (2017) Appl Phys A Mater Sci Process 123:595

    Article  Google Scholar 

  • Kaganov MI, Lifshitz IM, Tanatarov LV (1957) JETP 4:173

    Google Scholar 

  • Kang S, Vora K, Mazur E (2015) Nanotechnology 26:121001

    Article  Google Scholar 

  • Kawata S, Sun H-B, Tanaka T, Takada K (2001) Nature 412:697

    Article  Google Scholar 

  • Keldysh LV (1965) JETP 20:1307

    Google Scholar 

  • Krüger J, Kautek W (2004) Adv Polym Sci 168:247

    Article  Google Scholar 

  • Liao Y, Cheng Y, Liu C, Song J, He F, Shen Y, Chen D, Xu Z, Fan Z, Wei X, Sugioka K, Midorikawa K (2013) Lab Chip 13:1626

    Article  Google Scholar 

  • Liu J, Jia T, Zhou K, Feng D, Zhang S, Zhang H, Jia X, Sun Z, Qiu J (2014) Opt Express 22:32361

    Article  Google Scholar 

  • Liu Y, Hu Q, Zhang F, Tuck C, Irvine D, Hague R, He Y, Simonelli M, Rance G, Smith E, Wildman R (2016) Polymers 8:325

    Article  Google Scholar 

  • Machida M, Nakajima Y, Torres-Mapa ML, Heinemann D, Heisterkamp A, Terakawa M (2018) Sci Rep 8:187

    Google Scholar 

  • Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R, Juodkazis S (2016) Light Sci Appl 5:e16133

    Article  Google Scholar 

  • Maruo S, Saeki T (2008) Opt Express 16:1174

    Article  Google Scholar 

  • Maruo S, Nakamura O, Kawata S (1997) Opt Lett 22:132

    Article  Google Scholar 

  • McLeod E, Arnold CB (2008) Nat Nanotechnol 3:413

    Article  Google Scholar 

  • Momma C, Chichkov BN, Nolte S, von Alvensleben F (1996) Opt Commun 129:134

    Article  Google Scholar 

  • Nakajima Y, Obata K, Machida M, Hornholz A, Koch J, Suttmann O, Terakawa M (2017) Opt Mater Express 7:4203

    Article  Google Scholar 

  • Nakamura R, Kinashi K, Sakai W, Tsutsumi N (2016) Phys Chem Chem Phys 18:17024

    Article  Google Scholar 

  • Qiu J, Miura K, Suzuki T, Mitsuyu T, Hirao K (1999) Appl Phys Lett 74:10

    Article  Google Scholar 

  • Salomao MQ, Wilson SE (2010) J Cataract Refract Surg 36:1024

    Article  Google Scholar 

  • Selimis A, Mironov V, Farsari M (2015) Microelectron Eng 132:83

    Article  Google Scholar 

  • Shibata A, Yada S, Terakawa M (2016) Sci Rep 6:27884

    Article  Google Scholar 

  • Shukla S, Vidal X, Furlani EP, Swihart MT, Kim KT, Yoon YK, Urbas A, Prasad PN (2011) ACS Nano 5:1947

    Article  Google Scholar 

  • Srinivasan R, Sutcliffe E, Braren B (1987) Appl Phys Lett 51:1285

    Article  Google Scholar 

  • Stuart BC, Feit MD, Herman S, Rubenchik AM, Shore BW, Perry MD (1996) J Opt Soc Am B 13:459

    Article  Google Scholar 

  • Sugioka K (2017) Nanophotonics 6:393

    Article  Google Scholar 

  • Sun Y, Li Q, Sun S, Huang J, Zheng B, Chen Q, Shao Z, Sun H (2015) Nat Commun 6:8612

    Article  Google Scholar 

  • Sundaram SK, Mazur E (2002) Nat Mater 1:217

    Article  Google Scholar 

  • Tanaka T, Ishikawa A, Kawata S (2006) Appl Phys Lett 88:081107

    Article  Google Scholar 

  • Tanaka Y, Obara G, Zenidaka A, Terakawa M, Obara M (2010) Appl Phys Lett 96:261103

    Article  Google Scholar 

  • Terakawa M, Nedyalkov NN (2016) Adv Opt Technol 5:17

    Article  Google Scholar 

  • Terakawa M, Toratani E, Shirakawa T, Obara M (2010) Appl Phys A Mater Sci Process 100:1041

    Article  Google Scholar 

  • Terakawa M, Takeda S, Tanaka Y, Obara G, Miyanishi T, Sakai T, Sumiyoshi T, Sekita H, Hasegawa M, Viktorovitch P, Obara M (2012) Prog Quantum Electron 36:194

    Article  Google Scholar 

  • Terakawa M, T-Mapa ML, Takami A, Heinemann D, Nedyalkov NN, Nakajima Y, Hördt A, Ripken T, Heisterkamp A (2016) Opt Lett 41:1392

    Article  Google Scholar 

  • Tönshoff HK, Ostendorf A, Nolte S, Korte F, Bauer T (2000) Proc SPIE 4088:136

    Article  Google Scholar 

  • Vogel A, Noack J, Hüttman G, Paltauf G (2005) Appl Phys B Lasers Opt 81:1015

    Article  Google Scholar 

  • Watanabe W, Toma T, Yamada K, Nishii J, Hayashi K, Itoh K (2000) Opt Lett 26:1669

    Article  Google Scholar 

  • Wellershoff SS, Hohlfeld J, Gudde J, Matthias E (1999) Appl Phys A Mater Sci Process 69:S99

    Google Scholar 

  • Wu P-W, Cheng W, Martini IB, Dunn B, Schwartz BJ, Yablonovitch E (2000) Adv Mater 12:1438

    Article  Google Scholar 

  • Wu D, Wu S, Xu J, Niu L, Midorikawa K, Sugioka K (2014) Laser Photonics Rev 8:458

    Article  Google Scholar 

  • Yeong WY, Yu H, Lim KP, Ng KLG, Boey YCF, Subbu VS, Tan LP (2010) Tissue Eng Part C Methods 16:1011

    Article  Google Scholar 

  • Zhang P, Chen L, Wang F, Tu P (2017) Microw Opt Technol Lett 59:1993

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Terakawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Terakawa, M. (2018). Femtosecond Laser Direct Writing. In: Yan, J. (eds) Micro and Nano Fabrication Technology. Micro/Nano Technologies, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-6588-0_14-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6588-0_14-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6588-0

  • Online ISBN: 978-981-10-6588-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Femtosecond Laser Direct Writing
    Published:
    17 April 2018

    DOI: https://doi.org/10.1007/978-981-10-6588-0_14-2

  2. Original

    Femtosecond Laser Direct Writing
    Published:
    12 February 2018

    DOI: https://doi.org/10.1007/978-981-10-6588-0_14-1

Navigation