Triboelectric Nanogenerators for Electronic and Robotic Skins

  • Living reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators
  • 317 Accesses

Abstract

Electronics mimicking the attributes and functionalities of skins have been termed as electronic skins. They have shown promising potential in wide areas, ranging from wearable and skin-attachable electronics, smart human-device interfaces, robotics, to prosthetics. Conventional passive sensing technologies (such as resistive, capacitive, and optical electronic skins) suffer from the energy issues, limited materials, and complicated device architectures, hindering the development of untethered and deformable electronic and robotic skins. In contrast, TENG yields unique advantages such as self-powered sensing, abundant materials selection, simple structure, cost-effectiveness, and manufacturability, which can impart the fields of electronic and robotic skins with many possibilities that cannot be realized before. In this chapter, the TENG-based electronic and robotic skins will be introduced by classifying them into the following categories: stretchable, transparent, breathable, self-healable, harsh-environment tolerant, environment-friendly, biocompatible, and mechanoluminescent electronic skins. Afterward, the TENG-based skins used in rigid and soft robots will be discussed. Some representative works will be selected to show the immense potential of TENGs in electronic and robotic skins. Finally, challenges and summary of TENG-based electronic and robotic skins will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bu T, **ao T, Yang Z, Liu G, Fu X, Nie J, Guo T, Pang Y, Zhao J, ** F (2018) Stretchable triboelectric–photonic smart skin for tactile and gesture sensing. Adv Mater 30(16):1800066

    Article  Google Scholar 

  • Cao WT, Ouyang H, **n W, Chao S, Ma C, Li Z, Chen F, Ma MG (2020) A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity. Adv Funct Mater 30(50):2004181

    Article  CAS  Google Scholar 

  • Catania KC (2015) Electric eels use high-voltage to track fast-moving prey. Nat Commun 6(1):1–6

    Article  Google Scholar 

  • Chen J, Chen B, Han K, Tang W, Wang ZL (2019) A triboelectric nanogenerator as a self-powered sensor for a soft–rigid hybrid actuator. Adv Mater Technol 4(9):1900337

    Article  CAS  Google Scholar 

  • Chen S, Pang Y, Yuan H, Tan X, Cao C (2020) Smart soft actuators and grippers enabled by self-powered tribo-skins. Adv Mater Technol 5(4):1901075

    Article  Google Scholar 

  • Cheng R, Dong K, Liu L, Ning C, Chen P, Peng X, Liu D, Wang ZL (2020) Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano 14(11):15853–15863

    Article  Google Scholar 

  • Chortos A, Bao Z (2014) Skin-inspired electronic devices. Mater Today 17(7):321–331

    Article  CAS  Google Scholar 

  • Chortos A, Liu J, Bao Z (2016) Pursuing prosthetic electronic skin. Nat Mater 15(9):937–950

    Article  CAS  Google Scholar 

  • Deng J, Kuang X, Liu R, Ding W, Wang AC, Lai YC, Dong K, Wen Z, Wang Y, Wang L, Lin WZ (2018) Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv Mater 30(14):1705918

    Article  Google Scholar 

  • Dong K, Wu Z, Deng J, Wang AC, Zou H, Chen C, Hu D, Gu B, Sun B, Wang ZL (2018) A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv Mater 30(43):1804944

    Article  Google Scholar 

  • García Núñez C, Manjakkal L, Dahiya R (2019) Energy autonomous electronic skin. npj Flex Electron 3(1):1–24

    Article  Google Scholar 

  • Gonzalez-Bellido PT, Scaros AT, Hanlon RT, Wardill TJ (2018) Neural control of dynamic 3-dimensional skin papillae for cuttlefish camouflage. Iscience 1:24–34

    Article  Google Scholar 

  • Gu GQ, Han CB, Tian JJ, Lu CX, He C, Jiang T, Li Z, Wang ZL (2017) Antibacterial composite film-based triboelectric nanogenerator for harvesting walking energy. ACS Appl Mater Interfaces 9(13):11882–11888

    Article  CAS  Google Scholar 

  • Guan X, Xu B, Wu M, **g T, Yang Y, Gao Y (2021) Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy 80:105549

    Article  CAS  Google Scholar 

  • Guan Q, Lu X, Chen Y, Zhang H, Zheng Y, Neisiany RE, You Z (2022) High-performance liquid crystalline polymer for intrinsic fire-resistant and flexible triboelectric nanogenerators. Adv Mater 34:2204543

    Article  CAS  Google Scholar 

  • Guo ZH, Wang HL, Shao J, Shao Y, Jia L, Li L, Pu X, Wang ZL (2022) Bioinspired soft electroreceptors for artificial precontact somatosensation. Science. Advances 8(21):eabo5201

    CAS  Google Scholar 

  • Huang L-B, Dai X, Sun Z, Wong M-C, Pang S-Y, Han J, Zheng Q, Zhao C-H, Kong J, Hao JJNE (2021) Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy 82:105724

    Article  CAS  Google Scholar 

  • Jiang W, Li H, Liu Z, Li Z, Tian J, Shi B, Zou Y, Ouyang H, Zhao C, Zhao L (2018) Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv Mater 30(32):1801895

    Article  Google Scholar 

  • ** T, Sun Z, Li L, Zhang Q, Zhu M, Zhang Z, Yuan G, Chen T, Tian Y, Hou X (2020) Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat Commun 11(1):1–12

    Article  Google Scholar 

  • Khan A, Ginnaram S, Wu C-H, Lu H-W, Pu Y-F, Wu JI, Gupta D, Lai Y-C, Lin H-C (2021) Fully self-healable, highly stretchable, and anti-freezing supramolecular gels for energy-harvesting triboelectric nanogenerator and self-powered wearable electronics. Nano Energy 90:106525

    Article  CAS  Google Scholar 

  • Kim Y, Lee D, Seong J, Bak B, Choi UH, Kim J (2021) Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (TENG) for wearable energy solutions. Nano Energy 84:105925

    Article  CAS  Google Scholar 

  • Lai YC, Ye BW, Lu CF, Chen CT, Jao MH, Su WF, Hung WY, Lin TY, Chen YF (2016a) Extraordinarily sensitive and low-voltage operational cloth-based electronic skin for wearable sensing and multifunctional integration uses: a tactile-induced insulating-to-conducting transition. Adv Funct Mater 26(8):1286–1295

    Article  CAS  Google Scholar 

  • Lai YC, Deng J, Niu S, Peng W, Wu C, Liu R, Wen Z, Wang ZL (2016b) Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv Mater 28(45):10024–10032

    Article  CAS  Google Scholar 

  • Lai YC, Deng J, Liu R, Hsiao YC, Zhang SL, Peng W, Wu HM, Wang X, Wang ZL (2018) Actively perceiving and responsive soft robots enabled by self-powered, highly extensible, and highly sensitive triboelectric proximity-and pressure-sensing skins. Adv Mater 30(28):1801114

    Article  Google Scholar 

  • Lai YC, Wu HM, Lin HC, Chang CL, Chou HH, Hsiao YC, Wu YC (2019a) Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv Funct Mater 29(40):1904626

    Article  Google Scholar 

  • Lai YC, Hsiao YC, Wu HM, Wang ZL (2019b) Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv Sci 6(5):1801883

    Article  Google Scholar 

  • Lai YC, Lu HW, Wu HM, Zhang D, Yang J, Ma J, Shamsi M, Vallem V, Dickey M (2021) Elastic multifunctional liquid–metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors. Adv Energy Mater 11(18):2100411

    Article  CAS  Google Scholar 

  • Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, Mazzolai B, Shepherd R (2016) Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351(6277):1071–1074

    Article  CAS  Google Scholar 

  • Li Z, Zhu M, Shen J, Qiu Q, Yu J, Ding B (2020) All-fiber structured electronic skin with high elasticity and breathability. Adv Funct Mater 30(6):1908411

    Article  CAS  Google Scholar 

  • Li M, Cheng W-Y, Li Y-C, Wu H-M, Wu Y-C, Lu H-W, Cheng S-L, Li L, Chang K-C, Liu H-J (2021) Deformable, resilient, and mechanically-durable triboelectric nanogenerator based on recycled coffee waste for wearable power and self-powered smart sensors. Nano Energy 79:105405

    Article  CAS  Google Scholar 

  • Li L, Chen Y-T, Hsiao Y-C, Lai Y-C (2022) Mycena chlorophos-inspired autoluminescent triboelectric fiber for wearable energy harvesting, self-powered sensing, and as human–device interfaces. Nano Energy 94:106944

    Article  CAS  Google Scholar 

  • Lin X, Mao Y, Li P, Bai Y, Chen T, Wu K, Chen D, Yang H, Yang L (2021) Ultra-conformable ionic skin with multi-modal sensing, broad-spectrum antimicrobial and regenerative capabilities for smart and expedited wound care. Adv Sci 8(9):2004627

    Article  CAS  Google Scholar 

  • Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792

    Article  CAS  Google Scholar 

  • Liu Y, Wong TH, Huang X, Yiu CK, Gao Y, Zhao L, Zhou J, Park W, Zhao Z, Yao K (2022a) Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy 107442

    Google Scholar 

  • Liu R, Lai Y, Li S, Wu F, Shao J, Liu D, Dong X, Wang J, Wang ZL (2022b) Ultrathin, transparent, and robust self-healing electronic skins for tactile and non-contact sensing. Nano Energy 95:107056

    Article  CAS  Google Scholar 

  • Ma M, Zhang Z, Zhao Z, Liao Q, Kang Z, Gao F, Zhao X, Zhang Y (2019) Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism. Nano Energy 66:104105

    Article  CAS  Google Scholar 

  • Mannsfeld SC, Tee BC, Stoltenberg RM, Chen CV, Barman S, Muir BV, Sokolov AN, Reese C, Bao Z (2010) Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9(10):859–864

    Article  CAS  Google Scholar 

  • Oh JY, Bao Z (2019) Second skin enabled by advanced electronics. Adv Sci 6(11):1900186

    Article  Google Scholar 

  • Pan R, Xuan W, Chen J, Dong S, ** H, Wang X, Li H, Luo J (2018) Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 45:193–202

    Article  CAS  Google Scholar 

  • Parida K, Kumar V, Jiangxin W, Bhavanasi V, Bendi R, Lee PS (2017) Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv Mater 29(37):1702181

    Article  Google Scholar 

  • Parida K, Thangavel G, Cai G, Zhou X, Park S, **ong J, Lee PS (2019) Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat Commun 10(10):2158

    Article  Google Scholar 

  • Peng X, Dong K, Ye C, Jiang Y, Zhai S, Cheng R, Liu D, Gao X, Wang J, Wang ZL (2020) A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci Adv 6(26):eaba9624

    Article  CAS  Google Scholar 

  • Pikul J, Li S, Bai H, Hanlon R, Cohen I, Shepherd RF (2017) Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 358(6360):210–214

    Article  CAS  Google Scholar 

  • Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL (2017) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3(5):e1700015

    Article  Google Scholar 

  • Rong X, Zhao J, Guo H, Zhen G, Yu J, Zhang C, Dong G (2020) Material recognition sensor array by electrostatic induction and triboelectric effects. Adv Mater Technol 5(9):2000641

    Article  CAS  Google Scholar 

  • Shuai L, Guo ZH, Zhang P, Wan J, Pu X, Wang ZL (2020) Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy 78:105389

    Article  CAS  Google Scholar 

  • Song Z, Yin J, Wang Z, Lu C, Yang Z, Zhao Z, Lin Z, Wang J, Wu C, Cheng J (2022) A flexible triboelectric tactile sensor for simultaneous material and texture recognition. Nano Energy 93:106798

    Article  CAS  Google Scholar 

  • Sun J, Pu X, Liu M, Yu A, Du C, Zhai J, Hu W, Wang ZL (2018) Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 12(6):6147–6155

    Article  CAS  Google Scholar 

  • Sun L, Chen S, Guo Y, Song J, Zhang L, **ao L, Guan Q, You Z (2019) Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy 63:103847

    Article  CAS  Google Scholar 

  • Sun H, Zhao Y, Jiao S, Wang C, Jia Y, Dai K, Zheng G, Liu C, Wan P, Shen C (2021a) Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv Funct Mater 31(24):2101696

    Article  CAS  Google Scholar 

  • Sun Z, Zhu M, Zhang Z, Chen Z, Shi Q, Shan X, Yeow RCH, Lee C (2021b) Artificial Intelligence of Things (AIoT) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv Sci 8(14):2100230

    Article  Google Scholar 

  • Teyssier J, Saenko SV, Van Der Marel D, Milinkovitch MC (2015) Photonic crystals cause active colour change in chameleons. Nat Commun 6(1):1–7

    Article  Google Scholar 

  • Wang ZL (2017) On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20(2):74–82

    Article  Google Scholar 

  • Wang ZL (2021) From contact electrification to triboelectric nanogenerators. Rep Prog Phys 84(9):096502

    Article  CAS  Google Scholar 

  • Wang X, Gu Y, **ong Z, Cui Z, Zhang T (2014) Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater 26(9):1336–1342

    Article  CAS  Google Scholar 

  • Wang X, Dong L, Zhang H, Yu R, Pan C, Wang ZL (2015a) Recent progress in electronic skin. Adv Sci 2(10):1500169

    Article  Google Scholar 

  • Wang S, Lin L, Wang ZL (2015b) Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11:436–462

    Article  CAS  Google Scholar 

  • Wang ZL, Chen J, Lin L (2015c) Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 8(8):2250–2282

    Article  CAS  Google Scholar 

  • Wang X, Que M, Chen M, Han X, Li X, Pan C, Wang ZL (2017) Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing. Adv Mater 29(15):1605817

    Article  Google Scholar 

  • Wang X, Shi Y, Yang P, Tao X, Li S, Lei R, Liu Z, Wang ZL, Chen X (2022) Fish-wearable data snoo** platform for underwater energy harvesting and fish behavior monitoring. Small 18(10):2107232

    Article  CAS  Google Scholar 

  • Wei X, Wang B, Wu Z, Wang ZL (2022) Open-environment tactile sensing system: towards simple and efficient material identification. Adv Mater:2203073

    Google Scholar 

  • Xu W, Huang L-B, Wong M-C, Chen L, Bai G, Hao J (2017) Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv Energy Mater 7(1):1601529

    Article  Google Scholar 

  • Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S (2019) Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 31(48):1904765

    Article  CAS  Google Scholar 

  • Yang W, Gong W, Gu W, Liu Z, Hou C, Li Y, Zhang Q, Wang H (2021) Self-powered interactive fiber electronics with visual–digital synergies. Adv Mater 33(45):2104681

    Article  CAS  Google Scholar 

  • Zhang W, Zhang Y, Yang G, Hao X, Lv X, Wu F, Liu J, Zhang Y (2021) Wearable and self-powered sensors made by triboelectric nanogenerators assembled from antibacterial bromobutyl rubber. Nano Energy 82:105769

    Article  CAS  Google Scholar 

  • Zhang C, Wang M, Jiang C, Zhu P, Sun B, Gao Q, Gao C, Liu R (2022a) Highly adhesive and self-healing γ-PGA/PEDOT: PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics. Nano Energy 95:106991

    Article  CAS  Google Scholar 

  • Zhang X, Li Z, Du W, Zhao Y, Wang W, Pang L, Chen L, Yu A, Zhai J (2022b) Self-powered triboelectric-mechanoluminescent electronic skin for detecting and differentiating multiple mechanical stimuli. Nano Energy 96:107115

    Article  CAS  Google Scholar 

  • Zhang W, ** Y, Wang E, Qu X, Yang Y, Fan Y, Shi B, Li Z (2022c) Self-powered force sensors for multidimensional tactile sensing. ACS Appl Mater Interfaces 14(17):20122–20131

    Article  CAS  Google Scholar 

  • Zhao H, O’Brien K, Li S, Shepherd RF (2016) Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci Robot 1(1):eaai7529

    Article  Google Scholar 

  • Zhao G, Zhang Y, Shi N, Liu Z, Zhang X, Wu M, Pan C, Liu H, Li L, Wang ZL (2019) Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 59:302–310

    Article  CAS  Google Scholar 

  • Zhao Z, Huang Q, Yan C, Liu Y, Zeng X, Wei X, Hu Y, Zheng Z (2020a) Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy 70:104528

    Article  CAS  Google Scholar 

  • Zhao X, Zhang Z, Liao Q, Xun X, Gao F, Xu L, Kang Z, Zhang Y (2020b) Self-powered user-interactive electronic skin for programmable touch operation platform. Sci Adv 6(28):eaba4294

    Article  CAS  Google Scholar 

  • Zhu B, Niu Z, Wang H, Leow WR, Wang H, Li Y, Zheng L, Wei J, Huo F, Chen X (2014) Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 10(18):3625–3631

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Chih Lai , Ruiyuan Liu or Minyi Xu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lai, YC., Liu, R., Xu, M., Zhao, C. (2023). Triboelectric Nanogenerators for Electronic and Robotic Skins. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-05722-9_53-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05722-9_53-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05722-9

  • Online ISBN: 978-3-031-05722-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation