Log in

Progress and challenges in energy harvesting for electrical skin: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electronic skin has received widespread attention in the industry due to its conformal contact with human tissues and organs, improving interaction capabilities, and obtaining physical and chemical signals in the environment and human body. Electronic skin includes many sensors and electronic devices, which is difficult to produce and store energy by itself, and the use of external energy supply is cumbersome and unstable. Therefore, it is challenging to meet the energy needs of the electronic skin. Consequently, energy harvesting methods and the latest developments for electronic skin are reviewed. First, the performance and development trends of triboelectric nanogenerators, which generate electricity through mechanical energy and can be used as a self-driving sensor to electrical skin, are discussed. Then, the thermoelectric performance and future development of thermoelectric generators (TEGs), which use flexible thermoelectric materials and tiny temperature differences to generate electricity, are summarized. In addition, the basic challenges and latest efforts of flexible perovskite cell (F-PSC) made of perovskite materials with easy preparation, modification, and high efficiency are studied. This review provides an overview of the energy supply of electronic skin and its performance improvement and structural exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Reproduced with permission from reference [49] (Zhuang et al. 2021) by Wiley–VCH Verlag

Figure 5
Figure 6
Figure 7

Reproduced with permission from Reference [75] (Hu et al. 2017) by Wiley-Blackwell

Figure 8

Similar content being viewed by others

References

  1. Chu H, Jang H, Lee Y, Chae Y, Ahn J-H (2016) Conformal, graphene based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy 27:298–305. https://doi.org/10.1016/j.nanoen.2016.07.009

    Article  CAS  Google Scholar 

  2. Rasel MSU, Park J-Y (2017) A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application. Appl Energy 206:150–158. https://doi.org/10.1016/j.apenergy.2017.07.109

    Article  CAS  Google Scholar 

  3. Wang S, Lin L, Wang ZL (2015) Triboelectric nanogenerators as self- powered active sensors. Nano Energy 11:436–462. https://doi.org/10.1016/j.nanoen.2014.10.034

    Article  CAS  Google Scholar 

  4. Dhakar L, Pitchappa P, Tay FEH, Lee C (2016) An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator. Nano Energy 19:532–540. https://doi.org/10.1016/j.nanoen.2015.04.020

    Article  CAS  Google Scholar 

  5. Zhang M, Jie Y, Cao X, Bian J, Li T, Wang N, Wang ZL (2016) Robust design of unearthed single-electrode teng from three-dimensionally hybridized copper/polydimethylsiloxane film. Nano Energy 30:155–161. https://doi.org/10.1016/j.nanoen.2016.10.002

    Article  CAS  Google Scholar 

  6. Lee S, Lee Y, Kim D, Yang Y, Lin L, Lin Z-H, Hwang W, Wang ZL (2013) Triboelectric nanogenerator for harvesting pendulum oscillation energy. Nano Energy 2(6):1113–1120. https://doi.org/10.1016/j.nanoen.2013.08.007

    Article  CAS  Google Scholar 

  7. Montecucco A, Siviter J, Knox AR (2015) Constant heat characterisation and geometrical optimisation of thermoelectric generators. Appl Energy 149:248–258. https://doi.org/10.1016/j.apenergy.2015.03.120

    Article  Google Scholar 

  8. Huu TN, Van TN, Takahito O (2018) Flexible thermoelectric power generator with y-type structure using electrochemical deposition process. Appl Energy 210:467–476. https://doi.org/10.1016/j.apenergy.2017.05.005

    Article  CAS  Google Scholar 

  9. Pietrzyk K, Soares J, Ohara B, Lee H (2016) Power generation modeling for a wearable thermoelectric energy harvester with practical limitations. Appl Energy 183:218–228. https://doi.org/10.1016/j.apenergy.2016.08.186

    Article  CAS  Google Scholar 

  10. Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggr M, Crispin X (2011) Optimization of the thermoelectric figure of merit in the conducting polymer poly (3, 4-ethylenedioxythiophene). Nat Mater 10(6):429–433. https://doi.org/10.1038/nmat3012

    Article  CAS  Google Scholar 

  11. Moriarty GP, Wheeler JN, Yu C, Grunlan JC (2012) Increasing the thermoelectric power factor of polymer composites using a semiconducting stabilizer for carbon nanotubes. Carbon 50(3):885–895. https://doi.org/10.1016/j.carbon.2011.09.050

    Article  CAS  Google Scholar 

  12. Han S, Chung D (2013) Carbon fiber polymer–matrix structural composites exhibiting greatly enhanced through-thickness thermoelectric figure of merit. Compos A Appl Sci Manuf 48:162–170. https://doi.org/10.1016/j.compositesa.2013.01.008

    Article  CAS  Google Scholar 

  13. Ito M, Koizumi T, Kojima H, Saito T, Nakamura M (2017) From mate- rials to device design of a thermoelectric fabric for wearable energy harvesters. J Mater Chem A 5(24):12068–12072. https://doi.org/10.1039/C7TA00304H

    Article  CAS  Google Scholar 

  14. Oh JY, Lee JH, Han SW, Chae SS, Bae EJ, Kang YH, Choi WJ, Cho SY, Lee J-O, Baik HK et al (2016) Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ Sci 9(5):1696–1705. https://doi.org/10.1039/C5EE03813H

    Article  CAS  Google Scholar 

  15. Wan C, Tian R, Azizi AB, Huang Y, Wei Q, Sasai R, Wasusate S, Ishida T, Koumoto K (2016) Flexible thermoelectric foil for wearable energy harvesting. Nano Energy 30:840–845. https://doi.org/10.1016/j.nanoen.2016.09.011

    Article  CAS  Google Scholar 

  16. Wang Y, Shi Y, Mei D, Chen Z (2017) Wearable thermoelectric generator for harvesting heat on the curved human wrist. Appl Energy 205:710–719. https://doi.org/10.1016/j.apenergy.2017.08.117

    Article  Google Scholar 

  17. Cui Y, Wang B, Wang K (2021) Energy conversion performance optimization and strength evaluation of a wearable thermoelectric generator made of a thermoelectric layer on a flexible substrate. Energy 229:120694. https://doi.org/10.1016/j.energy.2021.120694

    Article  Google Scholar 

  18. Ciro J, Mej´ıa-EscobarJaramillo MAF (2017) Slot-die processing of flexible perovskite solar cells in ambient conditions. Sol Energy 150:570–576. https://doi.org/10.1016/j.solener.2017.04.071

    Article  CAS  Google Scholar 

  19. Xu M, Feng J, Fan Z-J, Ou X-L, Zhang Z-Y, Wang H-Y, Sun H-B (2017) Flexible perovskite solar cells with ultrathin au anode and vapour- deposited perovskite film. Sol Energy Mater Sol Cells 169:8–12. https://doi.org/10.1016/j.solmat.2017.04.039

    Article  CAS  Google Scholar 

  20. Dkhissi Y, Huang F, Rubanov S, **ao M, Bach U, Spiccia L, Caruso RA, Cheng Y-B (2015) Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. J Power Sour 278:325–331. https://doi.org/10.1016/j.jpowsour.2014.12.104

    Article  CAS  Google Scholar 

  21. Hu G, Guo W, Yu R, Yang X, Zhou R, Pan C, Wang ZL (2016) Enhanced performances of flexible zno/perovskite solar cells by piezo- phototronic effect. Nano Energy 23:27–33. https://doi.org/10.1016/j.nanoen.2016.02.057

    Article  CAS  Google Scholar 

  22. Zhang Y, Hu X, Chen L, Huang Z, Fu Q, Liu Y, Zhang L, Chen Y (2016) Flexible, hole transporting layer-free and stable ch3nh3pbi3/pc61bm planar heterojunction perovskite solar cells. Org Electron 30:281–288. https://doi.org/10.1016/j.orgel.2016.01.002

    Article  CAS  Google Scholar 

  23. Kang J, Han K, Sun X, Zhang L, Huang R, Ismail I, Wang Z, Ding C, Zha W, Li F et al (2020) Suppression of ag migration by low-temperature sol-gel zinc oxide in the ag nanowires transparent electrode-based flexible perovskite solar cells. Org Electron 82:105714. https://doi.org/10.1016/j.orgel.2020.105714

    Article  CAS  Google Scholar 

  24. Zhang X, Zabihi F, **ong H, Eslamian M, Hou C, Zhu M, Wang H, Zhang Q (2020) Highly efficient flexible perovskite solar cells made via ultrasonic vibration assisted room temperature cold sintering. Chem Eng J 394:124887. https://doi.org/10.1016/j.cej.2020.124887

    Article  CAS  Google Scholar 

  25. Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11):9533–9557. https://doi.org/10.1021/nn404614z

    Article  CAS  Google Scholar 

  26. Lin´aWang Z (2014) Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives. Faraday Discuss 176:447–458. https://doi.org/10.1039/C4FD00159A

    Article  CAS  Google Scholar 

  27. Niu S, Liu Y, Wang S, Lin L, Zhou YS, Hu Y, Wang ZL (2013) Theory of sliding-mode triboelectric nanogenerators. Adv Mater 25(43):6184–6193. https://doi.org/10.1002/adma.201302808

    Article  CAS  Google Scholar 

  28. Wang ZL (2012) Self-powered nanosensors and nanosystems. Adv Mater 24:280–285. https://doi.org/10.1002/adma.201102958

    Article  CAS  Google Scholar 

  29. Shankaregowda SA, Ahmed RFSM, Nanjegowda CB, Wang J, Guan S, Puttaswamy M, Amini A, Zhang Y, Kong D, Sannatham-megowda K et al (2019) Single-electrode triboelectric nanogenerator basedon economical graphite coated paper for harvesting waste environmental energy. Nano Energy 66:104141. https://doi.org/10.1016/j.nanoen.2019.104141

    Article  CAS  Google Scholar 

  30. Sun N, Wen Z, Zhao F, Yang Y, Shao H, Zhou C, Shen Q, Feng K, Peng M, Li Y et al (2017) All flexible electrospun papers based self- charging power system. Nano Energy 38:210–217. https://doi.org/10.1016/j.nanoen.2017.05.048

    Article  CAS  Google Scholar 

  31. Gogurla N, Roy B, Park J-Y, Kim S (2019) Skin-contact actuated single- electrode protein triboelectric nanogenerator and strain sensor for biomechanical energy harvesting and motion sensing. Nano Energy 62:674–681. https://doi.org/10.1016/j.nanoen.2019.05.082

    Article  CAS  Google Scholar 

  32. Zhou K, Zhao Y, Sun X, Yuan Z, Zheng G, Dai K, Mi L, Pan C, Liu C, Shen C (2020) Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy 70:104546. https://doi.org/10.1016/j.nanoen.2020.104546

    Article  CAS  Google Scholar 

  33. Son D, Kang J, Vardoulis O, Kim Y, Matsuhisa N, Oh JY, To JW, Mun J, Katsumata T, Liu Y et al (2018) An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotechnol 13(11):1057–1065. https://doi.org/10.1038/s41565-018-0244-6

    Article  CAS  Google Scholar 

  34. Wu Y, Luo Y, Qu J, Daoud WA, Qi T (2019) Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics. Nano Energy 64:103948. https://doi.org/10.1016/j.nanoen.2019.103948

    Article  CAS  Google Scholar 

  35. Kim Y, Lee D, Seong J, Bak B, Choi UH, Kim J (2021) Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (teng) for wearable energy solutions. Nano Energy 84:105925. https://doi.org/10.1016/j.nanoen.2021.105925

    Article  CAS  Google Scholar 

  36. Zhang C, Liu S, Huang X, Guo W, Li Y, Wu H (2019) A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy 62:164–170. https://doi.org/10.1016/j.nanoen.2019.05.046

    Article  CAS  Google Scholar 

  37. Kang H, Zhao C, Huang J, Ho DH, Megra YT, Suk JW, Sun J, Wang ZL, Sun Q, Cho JH (2019) Fingerprint-inspired conducting hierarchical wrinkles for energy-harvesting e-skin. Adv Func Mater 29(43):1903580. https://doi.org/10.1002/adfm.201903580

    Article  CAS  Google Scholar 

  38. Zhu XX, Meng XS, Kuang SY, Di Wang X, Pan CF, Zhu G, Wang ZL (2017) Triboelectrification-enabled touch sensing for self-powered position map** and dynamic tracking by a flexible and area-scalable sensor array. Nano Energy 41:387–393. https://doi.org/10.1016/j.nanoen.2017.09.025

    Article  CAS  Google Scholar 

  39. Liu P, Sun N, Mi Y, Luo X, Dong X, Cai J, Jia X, Ramos MA, Hu TS, Xu Q (2021) Ultra-low cnts filled high-performance fast self- healing triboelectric nanogenerators for wearable electronics. Compos Sci Technol 208:108733. https://doi.org/10.1016/j.compscitech.2021.108733

    Article  CAS  Google Scholar 

  40. Ahn J, Zhao Z-J, Choi J, Jeong Y, Hwang S, Ko J, Gu J, Jeon S, Park J, Kang M et al (2021) Morphology-controllable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator. Nano Energy 85:105978. https://doi.org/10.1016/j.nanoen.2021.105978

    Article  CAS  Google Scholar 

  41. Sun Q-J, Lei Y, Zhao X-H, Han J, Cao R, Zhang J, Wu W, Heidari H, Li W-J, Sun Q et al (2021) Scalable fabrication of hierarchically structured graphite/polydimethylsiloxane composite films for large-area triboelectric nanogenerators and self-powered tactile sensing. Nano Energy 80:105521. https://doi.org/10.1016/j.nanoen.2020.105521

    Article  CAS  Google Scholar 

  42. Chen X, Guo H, Wu H, Chen H, Song Y, Su Z, Zhang H (2018) Hybrid generator based on freestanding magnet as all-direction in-plane energy harvester and vibration sensor. Nano Energy 49:51–58. https://doi.org/10.1016/j.nanoen.2018.04.024

    Article  CAS  Google Scholar 

  43. Feng Y, Huang X, Liu S, Guo W, Li Y, Wu H (2019) A self-powered smart safety belt enabled by triboelectric nanogenerators for driving status monitoring. Nano Energy 62:197–204. https://doi.org/10.1016/j.nanoen.2019.05.043

    Article  CAS  Google Scholar 

  44. Kraemer D, Poudel B, Feng H-P, Caylor JC, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A et al (2011) High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater 10(7):532–538. https://doi.org/10.1038/nmat3013

    Article  CAS  Google Scholar 

  45. He J, Tritt TM (2017) Advances in thermoelectric materials research: looking back and moving forward. Science 357(6358):9997. https://doi.org/10.1126/science.aak9997

    Article  CAS  Google Scholar 

  46. Feng R, Tang F, Zhang N, Wang X (2019) Flexible, high-power density, wearable thermoelectric nanogenerator and self-powered temperature sensor. ACS Appl Mater Interfaces 11(42):38616–38624. https://doi.org/10.1021/acsami.9b11435

    Article  CAS  Google Scholar 

  47. Wang Y, Zhu W, Deng Y, Fu B, Zhu P, Yu Y, Li J, Guo J (2020) Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 73:104773. https://doi.org/10.1016/j.nanoen.2020.104773

    Article  CAS  Google Scholar 

  48. Yuan J, Zhu R, Li G (2020) Self-powered electronic skin with multisensory functions based on thermoelectric conversion. Adv Mater Technol 5(9):2000419. https://doi.org/10.1002/admt.202000419

    Article  CAS  Google Scholar 

  49. Zhuang H-L, Pei J, Cai B, Dong J, Hu H, Sun F-H, Pan Y, Snyder GJ, Li J-F (2021) Thermoelectric performance enhancement in bisbte alloy by microstructure modulation via cyclic spark plasma sintering with liquid phase. Adv Func Mater 31(15):2009681. https://doi.org/10.1002/adfm.202009681

    Article  CAS  Google Scholar 

  50. Hinterleitner B, Knapp I, Poneder M, Shi Y, Mu¨llerEguchiEisenmenger-SittnerSt¨oger-PollachKakefudaKawamoto HGCMYN et al (2019) Thermoelectric performance of a metastable thin-film heusler alloy. Nature 576(7785):85–90. https://doi.org/10.1038/s41586-019-1751-9

    Article  CAS  Google Scholar 

  51. Ren W, Sun Y, Zhao D, Aili A, Zhang S, Shi C, Zhang J, Geng H, Zhang J, Zhang L et al (2021) High-performance wearable thermoelectric generator with self-healing, recycling, and lego-like reconfiguring capabilities. Sci Adv 7(7):0586. https://doi.org/10.1126/sciadv.abe0586

    Article  CAS  Google Scholar 

  52. Kim CS, Lee GS, Choi H, Kim YJ, Yang HM, Lim SH, Lee S-G, Cho BJ (2018) Structural design of a flexible thermoelectric power generator for wearable applications. Appl Energy 214:131–138. https://doi.org/10.1016/j.apenergy.2018.01.074

    Article  Google Scholar 

  53. Zhao X, Zhao C, Jiang Y, Ji X, Kong F, Lin T, Shao H, Han W (2020) Flexible cellulose nanofiber/bi2te3 composite film for wearable thermoelectric devices. J Power Sour 479:229044. https://doi.org/10.1016/j.jpowsour.2020.229044

    Article  CAS  Google Scholar 

  54. Lee B, Cho H, Park KT, Kim J-S, Park M, Kim H, Hong Y, Chung S (2020) High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat Commun 11(1):1–12. https://doi.org/10.1038/s41467-020-19756-z

    Article  CAS  Google Scholar 

  55. Wen D-L, Deng H-T, Liu X, Li G-K, Zhang X-R, Zhang X-S (2020) Wearable multi-sensing double-chain thermoelectric generator. Microsyst Nanoeng 6(1):1–13. https://doi.org/10.1038/s41378-020-0179-6

    Article  Google Scholar 

  56. Yuan J, Zhu R (2020) A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator. Appl Energy 271:115250. https://doi.org/10.1016/j.apenergy.2020.115250

    Article  Google Scholar 

  57. Wang Y, Shi Y, Mei D, Chen Z (2018) Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Appl Energy 215:690–698. https://doi.org/10.1016/j.apenergy.2018.02.062

    Article  CAS  Google Scholar 

  58. Yu Y, Zhai Y, Yun Z, Zhai W, Wang X, Zheng G, Yan C, Dai K, Liu C, Shen C (2019) Ultra-stretchable porous fiber-shaped strain sensor with exponential response in full sensing range and excellent anti- interference ability toward buckling, torsion, temperature, and humidity. Adv Electron Mater 5(10):1900538. https://doi.org/10.1002/aelm.201900538

    Article  CAS  Google Scholar 

  59. Zhai Y, Yu Y, Zhou K, Yun Z, Huang W, Liu H, **a Q, Dai K, Zheng G, Liu C et al (2020) Flexible and wearable carbon black/thermo- plastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors. Chem Eng J 382:122985. https://doi.org/10.1016/j.cej.2019.122985

    Article  CAS  Google Scholar 

  60. Liu W, Wang Z, Wang G, Liu G, Chen J, Pu X, ** Y, Wang X, Guo H, Hu C et al (2019) Integrated charge excitation triboelectric nanogenerator. Nat Commun 10(1):1–9. https://doi.org/10.1038/s41467-019-09464-8

    Article  CAS  Google Scholar 

  61. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  62. Im J-H, Lee C-R, Lee J-W, Park S-W, Park N-G (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093. https://doi.org/10.1039/C1NR10867K

    Article  CAS  Google Scholar 

  63. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(1):1–7. https://doi.org/10.1038/srep00591

    Article  CAS  Google Scholar 

  64. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398. https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  65. Saliba M, Matsui T, Seo J-Y, Domanski K, Correa-Baena J-P, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A et al (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9(6):1989–1997. https://doi.org/10.1039/C5EE03874J

    Article  CAS  Google Scholar 

  66. Yang WS, Park B-W, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH et al (2017) Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345):1376–1379. https://doi.org/10.1126/science.aan2301

    Article  CAS  Google Scholar 

  67. Seo J, Park S, Kim YC, Jeon NJ, Noh JH, Yoon SC, Seok SI (2014) Benefits of very thin pcbm and lif layers for solution-processed p–i–n perovskite solar cells. Energy Environ Sci 7(8):2642–2646. https://doi.org/10.1039/C4EE01216J

    Article  CAS  Google Scholar 

  68. Hu X, Meng X, Zhang L, Zhang Y, Cai Z, Huang Z, Su M, Wang Y, Li M, Li F et al (2019) A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule 3(9):2205–2218. https://doi.org/10.1016/j.joule.2019.06.011

    Article  CAS  Google Scholar 

  69. Al-Ashouri A, KohnenLiMagomedovHempelCapri- oglioMarquezMoralesVilchesKasparaviciusSmith EBAHPJAABEJA et al (2020) Monolithic perovskite/silicon tandem solar cell with¿ 29% efficiency by enhanced hole extraction. Science 370(6522):1300–1309. https://doi.org/10.1126/science.abd4016

    Article  CAS  Google Scholar 

  70. Jung JW, Bae JH, Ko JH, Lee W (2018) Fully solution-processed indium tin oxide-free textile-based flexible solar cells made of an organic– inorganic perovskite absorber: toward a wearable power source. J Power Sour 402:327–332. https://doi.org/10.1016/j.jpowsour.2018.09.038

    Article  CAS  Google Scholar 

  71. Ko J, Zhao Z-J, Hwang SH, Kang H-J, Ahn J, Jeon S, Bok M, Jeong Y, Kang K, Cho I et al (2020) Nanotransfer printing on textile substrate with water-soluble polymer nanotemplate. ACS Nano 14(2):2191–2201. https://doi.org/10.1021/acsnano.9b09082

    Article  CAS  Google Scholar 

  72. Zhong M, Liang Y, Zhang J, Wei Z, Li Q, Xu D (2019) Highly efficient flexible mapbi 3 solar cells with a fullerene derivative-modified sno 2 layer as the electron transport layer. J Mater Chem A 7(12):6659–6664. https://doi.org/10.1039/C9TA00398C

    Article  CAS  Google Scholar 

  73. Cho E, Kim YY, Ham DS, Lee JH, Park J-S, Seo J, Lee, S.- J. (2021) Highly efficient and stable flexible perovskite solar cells enabled by using plasma-polymerized-fluorocarbon antireflection layer. Nano Energy 82:105737. https://doi.org/10.1016/j.nanoen.2020.105737

    Article  CAS  Google Scholar 

  74. Kim YY, Yang T-Y, Suhonen R, Kemppainen A, Hwang K, Jeon NJ, Seo J (2020) Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nat Commun 11(1):1–11. https://doi.org/10.1038/s41467-020-18940-5

    Article  CAS  Google Scholar 

  75. Hu X, Huang Z, Zhou X, Li P, Wang Y, Huang Z, Su M, Ren W, Li F, Li M et al (2017) Wearable large-scale perovskite solar-power source via nanocellular scaffold. Adv Mater 29(42):1703236. https://doi.org/10.1002/adma.201703236

    Article  CAS  Google Scholar 

  76. Lei Y, Chen Y, Zhang R, Li Y, Yan Q, Lee S, Yu Y, Tsai H, Choi W, Wang K et al (2020) A fabrication process for flexible single-crystal perovskite devices. Nature 583(7818):790–795. https://doi.org/10.1038/s41586-020-2526-z

    Article  CAS  Google Scholar 

  77. Sun J, Hua Q, Zhou R, Li D, Guo W, Li X, Hu G, Shan C, Meng Q, Dong L et al (2019) Piezo-phototronic effect enhanced efficient flexible perovskite solar cells. ACS Nano 13(4):4507–4513. https://doi.org/10.1021/acsnano.9b00125

    Article  CAS  Google Scholar 

  78. Lee G, Kim M-C, Choi YW, Ahn N, Jang J, Yoon J, Kim SM, Lee J-G, Kang D, Jung HS et al (2019) Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy Environ Sci 12(10):3182–3191. https://doi.org/10.1039/C9EE01944H

    Article  CAS  Google Scholar 

  79. Meng X, **ng Z, Hu X, Huang Z, Hu T, Tan L, Li F, Chen Y (2020) Stretchable perovskite solar cells with recoverable performance. Ange-wandte Chem Int Edit 59(38):16602–16608. https://doi.org/10.1002/anie.202003813

    Article  CAS  Google Scholar 

  80. Li M, Yang Y-G, Wang Z-K, Kang T, Wang Q, Turren-Cruz S-H, Gao X-Y, Hsu C-S, Liao L-S, Abate A (2019) Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv Mater 31(25):1901519. https://doi.org/10.1002/adma.201901519

    Article  CAS  Google Scholar 

  81. Wang Z, Zeng L, Zhang C, Lu Y, Qiu S, Wang C, Liu C, Pan L, Wu S, Hu J et al (2020) Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%. Adv Func Mater 30(32):2001240. https://doi.org/10.1002/adfm.202001240

    Article  CAS  Google Scholar 

  82. Yoon J, Kim U, Yoo Y, Byeon J, Lee S-K, Nam J-S, Kim K, Zhang Q, Kauppinen EI, Maruyama S et al (2021) Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor. Adv Sci 8(7):2004092. https://doi.org/10.1002/advs.202004092

    Article  CAS  Google Scholar 

  83. Yu X, Li Z, Sun X, Zhong C, Zhu Z, Jen AK-Y et al (2021) Dopant- free dicyanofluoranthene-based hole transporting material with low cost enables efficient flexible perovskite solar cells. Nano Energy 82:105701. https://doi.org/10.1016/j.nanoen.2020.105701

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (Grant No. 2021YFB3201600), and the National Natural Science Foundation of Liaoning (Grant No. 2020-MS-219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Consent for publication

Not applicable.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 20 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Li, W. Progress and challenges in energy harvesting for electrical skin: a review. J Mater Sci 57, 20095–20111 (2022). https://doi.org/10.1007/s10853-022-07951-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07951-w

Navigation