Nonlinear System Identification Using Particle Filters

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Systems and Control
  • 63 Accesses

Abstract

Particle filters are computational methods opening up for systematic inference in nonlinear/non-Gaussian state-space models. The particle filter constitute the most popular sequential Monte Carlo (SMC) method. This is a relatively recent development, and the aim here is to provide a brief exposition of these SMC methods and how they are key enabling algorithms in solving nonlinear system identification problems. The particle filters are important for both frequentist (maximum likelihood) and Bayesian nonlinear system identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods. J R Stat Soc Ser B 72(2):1–33

    MathSciNet  MATH  Google Scholar 

  • Cappé O (2011) Online EM algorithm for hidden Markov models. J Comput Graph Stat 20(3):728–749

    Article  MathSciNet  Google Scholar 

  • Cappé O, Moulines E, Rydén T (2005) Inference in hidden Markov models. Springer, New York

    Book  Google Scholar 

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  • Douc R, Moulines E, Stoffer D (2014) Nonlinear time series: theory, methods and applications with R examples. CRC Press, Boca Raton/London/New York

    Book  Google Scholar 

  • Doucet A, Johansen AM (2011) A tutorial on particle filtering and smoothing: fifteen years later. In: Crisan D, Rozovsky B (eds) Nonlinear filtering handbook. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Giri F, Bai E-W (eds) (2010) Block-oriented nonlinear system identification. Lecture notes in control and information sciences, Vol 404. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc Radar Signal Process 140: 107–113

    Article  Google Scholar 

  • Hjort N, Holmes C, Müller P, Walker S (eds) (2010) Bayesian nonparametrics. Cambridge University Press, Cambridge/New York

    MATH  Google Scholar 

  • Kantas N, Doucet A, Singh SS, Maciejowski JM, Chopin N (2015) On particle methods for parameter estimation in state-space models. Stat Sci 30(3):328–351

    Article  MathSciNet  Google Scholar 

  • Lindsten F, Schön TB (2013) Backward simulation methods for Monte Carlo statistical inference. Found Trends Mach Learn 6(1):1–143

    Article  Google Scholar 

  • Lindsten F, Schön TB, Jordan MI (2013) Bayesian semiparametric Wiener system identification. Automatica 49(7):2053–2063

    Article  MathSciNet  Google Scholar 

  • Lindsten F, Jordan MI, Schön TB (2014) Particle Gibbs with ancestor sampling. J Mach Learn Res (JMLR) 15:2145–2184

    MathSciNet  MATH  Google Scholar 

  • Poyiadjis G, Doucet A, Singh SS (2011) Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika 98(1):65–80

    Article  MathSciNet  Google Scholar 

  • Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT, Cambridge

    MATH  Google Scholar 

  • Robert CP, Casella G (2004) Monte Carlo statistical methods, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Särkkä S (2013) Bayesian filtering and smoothing. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schön TB, Wills A, Ninness B (2011) System identification of nonlinear state-space models. Automatica 47(1):39–49

    Article  MathSciNet  Google Scholar 

  • Schön TB, Lindsten F, Dahlin J, WÃ¥gberg J, Naesseth CA, Svensson A, Dai L (2015) Sequential Monte Carlo methods for system identification. In: Proceedings of the 17th IFAC symposium on system identification, Bei**g, pp 775–786

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas B. Schön .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schön, T.B. (2020). Nonlinear System Identification Using Particle Filters. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_106-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_106-2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Nonlinear System Identification Using Particle Filters
    Published:
    12 December 2019

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_106-2

  2. Original

    Nonlinear System Identification Using Particle Filters
    Published:
    26 March 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_106-1

Navigation