Wastewater Treatment and Control Through Wetlands

  • Reference work entry
  • First Online:
Water Sustainability
  • 218 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC, 2012

Glossary

Constructed wetland (CW):

Constructed wetlands are engineered systems that have been designed and constructed to utilize the natural processes involving wetland vegetation, soils, and their associated microbial assemblages to assist in treating wastewater. Constructed wetlands offer several additional advantages compared to natural wetlands including site selection, flexibility in sizing, and most importantly, control over the hydraulic pathways and retention time.

CW with horizontal subsurface flow:

Constructed wetland where wastewater is fed in at the inlet and flows slowly through the porous medium under the surface of the bed in a more or less horizontal path until it reaches the outlet zone where it is collected before leaving via level control arrangement at the outlet. During this passage, the wastewater will come into contact with a network of aerobic, anoxic, and anaerobic zones.

CW with vertical flow:

Constructed wetlands where water is fed intermittently on the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Mitsch WJ, Mitsch RH, Turner RE (1994) Wetlands of the old and new worlds: ecology and management. In: Mitsch WJ (ed) Global wetlands: old world and new. Elsevier Science, Amsterdam, pp 3–56

    Google Scholar 

  2. Maltby E, Turner GE (1983) Wetlands of the world. Geogr Mag 55:12–17

    Google Scholar 

  3. Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cycles 1:61–86

    Article  ADS  CAS  Google Scholar 

  4. Aselman I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358

    Article  Google Scholar 

  5. Aselman I, Crutzen PJ (1990) A global inventory of wetland distribution and seasonality, net primary productivity, and estimated methane emissions. In: Bouwman AF (ed) Soils and the greenhouse effect. Wiley, New York, pp 441–449

    Google Scholar 

  6. Patten BC (1990) Introduction and overview. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. SPB Academic, The Hague, pp 3–8

    Google Scholar 

  7. Williams M (1990) Understanding wetlands. In: Williams M (ed) Wetlands: a threatened landscape. Basil Blackwell, Oxford, pp 1–41

    Google Scholar 

  8. Chen ZM, Chen GQ, Chen B, Zhou JB, Yang ZF, Zhou Y (2009) Net ecosystem services value of wetlands: environmental economic account. Commun Nonlinear Sci Numer Simul 14:2837–2843

    Article  ADS  Google Scholar 

  9. Geber U, Björklund J (2002) The relationship between ecosystem services and purchased input in Swedish wastewater treatment systems – a case study. Ecol Eng 19:97–117

    Article  Google Scholar 

  10. Moreno D, Pedrocchi C, Comín FA, García M, Cabezas A (2007) Creating wetlands for the improvement of water quality and landscape restoration in semi-arid zones degraded by intensive agricultural use. Ecol Eng 30:103–111

    Article  Google Scholar 

  11. Löffler H (1990) Human uses. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. SPB Academic, The Hague, pp 17–27

    Google Scholar 

  12. Sather JH, Smith RD, Larson JS (1990) Natural values of wetlands. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. SPB Academic, The Hague, pp 373–387

    Google Scholar 

  13. Stainbridge HH (1976) History of sewage treatment in Britain, part 5. Land treatment. Institute of Water Pollution Control, Maidstone

    Google Scholar 

  14. Wentz WA (1987) Ecological/environmental perspectives on the use of wetlands in water treatment. In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia, Orlando, pp 17–25

    Google Scholar 

  15. Brix H (1993) Wastewater treatment in constructed wetlands: system design, removal processes, and treatment performance. In: Moshiri AG (ed) Constructed wetlands for water quality improvement. CRC Press, Boca Raton, pp 9–22

    Google Scholar 

  16. Kadlec RH (2009) The Houghton Lake wetland treatment project. Ecol Eng 35:1285–1286

    Article  Google Scholar 

  17. Mander Ü, Jenssen P (eds) (2002) Natural wetlands for wastewater treatment in cold climates. WIT Press, Southampton

    Google Scholar 

  18. Hammer DA, Bastian RK (1989) Wetland ecosystems: natural water purifiers? In: Hammer DA (ed) Constructed wetlands for wastewater treatment. Lewis, Chelsea, pp 5–19

    Google Scholar 

  19. Seidel K (1953) Pflanzungen zwischen Gewässern und Land. J Max Planck Inst 17–20

    Google Scholar 

  20. Seidel K (1965) Phenol-Abbau in Wasser durch Scirpus lacustris L. wehrend einer versuchsdauer von 31 Monaten. Naturwissenschaften 52:398–406

    Article  CAS  Google Scholar 

  21. Seidel K (1976) Macrophytes and water purification. In: Tourbier J, Pierson RW (eds) Biological control of water pollution. Pennsylvania University Press, Philadelphia, pp 109–122

    Chapter  Google Scholar 

  22. Seidel K (1961) Zur Problematik der Keim- und Pflanzengewasser. Verh Internat Verein Limnol 14:1035–1039

    Google Scholar 

  23. Seidel K (1965) Neue Wege zur Grundwasseranreicherung in Krefeld, Vol. II. Hydrobotanische Reinigungsmethode. GWF Wasser/Abwasser 30:831–833

    Google Scholar 

  24. Börner T, von Felde K, Gschlössl T, Gschlössl E, Kunst S, Wissing FW (1998) Germany. In: Vymazal J, Brix H, Cooper PF, Green MB, Haberl R (eds) Constructed wetlands for wastewater treatment in Europe. Backhuys, Leiden, pp 169–190

    Google Scholar 

  25. De Jong J (1976) The purification of wastewater with the aid of rush or reed ponds. In: Tourbier J, Pierson RW (eds) Biological control of water pollution. Pennsylvania University Press, Philadelphia, pp 133–139

    Chapter  Google Scholar 

  26. Vymazal J (2005) Constructed wetlands with horizontal sub-surface flow and hybrid systems for wastewater treatment. Ecol Eng 25:478–490

    Article  Google Scholar 

  27. Vymazal J, Greenway M, Tonderski K, Brix H, Mander Ü (2006) Constructed wetlands for wastewater treatment. In: Verhoeven JTA, Beltman B, Bobbink R, Whigham DF (eds) Wetlands and natural resource management, vol 190, Ecological studies. Springer, Berlin/Heidelberg, pp 69–94

    Chapter  Google Scholar 

  28. Wallace SD, Knight RL (2006) Small scale constructed wetland treatment systems. Feasibility, design criteria, and O&M requirements. Water Environment Research Foundation, Alexandria

    Google Scholar 

  29. Kadlec RH, Knight RL, Vymazal J, Brix H, Cooper PF, Haberl R (2000) Constructed wetlands for water pollution control: processes, performance, design and operation. Technical report no. 8. International Water Association Scientific, London

    Google Scholar 

  30. Rogers HH, Davis DE (1972) Nutrient removal by water hyacinth. Weed Sci 20:423–427

    Article  Google Scholar 

  31. Penfound WT, Earle TT (1948) The biology of the water hyacinth. Ecol Monogr 18:447–472

    Article  Google Scholar 

  32. Crites R, Tchobanoglous G (1998) Small and decentralized wastewater management systems. McGraw-Hill, Boston

    Google Scholar 

  33. Culley DD Jr, Epps EA (1973) Use of duckweed for waste treatment and animal feed. J Water Pollut Control Fed 45:337–347

    Google Scholar 

  34. Rai DN, Munshi JD (1979) The influence of thick floating vegetation (waterhyacinth-Eichhornia crassipes) on the physicochemical environment of a freshwater wetland. Hydrobiologia 62:65–69

    Article  CAS  Google Scholar 

  35. Wolverton BC (1979) Engineering design data for small vascular aquatic plant wastewater treatment systems. In: Bastian RK, Reed SC (eds) Aquaculture systems for wastewater treatment: seminar proceedings and engineering assessment. EPA 430/9-80-006. U.S. EPA, Washington, DC, pp 179–192

    Google Scholar 

  36. Reddy KR, DeBusk WF (1984) Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water. I. Water hyacinth, water lettuce and pennywort. Econ Bot 38:229–239

    Article  Google Scholar 

  37. Rejmánková E, Rejmánek M, Kvet J (1990) Minimizing duckweed (Lemnaceae) production by suitable harvest strategy. In: Whigham DF, Good RE, Kvet J (eds) Wetland ecology and management: case studies. Kluwer, Dordrecht, pp 39–43

    Chapter  Google Scholar 

  38. Reed SC, Middlebrooks EJ, Crites RW (1995) Natural systems for waste management and treatment, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  39. Vymazal J (2008) Constructed wetlands, surface flow. In: Jørgensen SE (ed) Encyclopedia of ecology, vol 1. Elsevier B.V, Amsterdam, pp 765–777

    Chapter  Google Scholar 

  40. Stewart EA III, Haselow DL, Wyse NM (1987) Review of operations and performance data of five water hyacinth based treatment systems in Florida. In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia, Orlando, pp 279–288

    Google Scholar 

  41. Ozimek T, Czyprznski P (2003) Ten years´ experience of constructed wetlands in Poland. Publ Inst Geogr Univ Tartuensis 94:163–167

    Google Scholar 

  42. Denny P (1980) Solute movement in submerged angiosperms. Biol Rev 55:65–92

    Article  CAS  Google Scholar 

  43. Carignan R, Kalff J (1980) Phosphorus sources for aquatic weeds: water or sediments? Science 207:987–989

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Twilley RR, Kemp WM, Staver KW, Stevenson JC, Boynton WR (1985) Nutrient enrichment of estuarine submersed vascular plant communities. 1. Algal growth and effects on production of plants and associated communities. Mar Ecol Prog Ser 23:179–191

    Article  ADS  Google Scholar 

  45. Gu B, DeBusk TA, Dierberg FE, Chimney MJ, Pietro KC, Aziz T (2001) Phosphorus removal from Everglades agricultural runoff by submerged aquatic vegetation/limerock treatment technology: an overview of research. Water Sci Technol 44(11/12):101–108

    Article  CAS  PubMed  Google Scholar 

  46. Bishop PL, Eighmy TT (1989) Aquatic wastewater treatment using Elodea nuttalii. J Water Pollut Control Fed 61:641–648

    Google Scholar 

  47. Toet S, Van Logtestijn RSP, Schreier M, Kampf R, Verhoeven JTA (2005) The functioning of a wetland system used for polishing effluent from a sewage treatment plant. Ecol Eng 25:101–124

    Article  Google Scholar 

  48. Yang Y, Zhencheng X, Kang** H, Junsan W, Guizhi W (1994) Removal efficiency of the constructed wetland wastewater treatment system at Bainikeng, Shenzhen. In: Proceedings of the 4th international conference wetland systems for water pollution control. ICWS’94 Secretariat, Guangzhou, pp 94–103

    Google Scholar 

  49. Kadlec RH (1994) Overview: surface flow constructed wetlands. In: Proceedings of the 4th international conference wetland systems for water pollution control. ICWS Secretariat, Guangzhou, pp 1–12

    Google Scholar 

  50. Queensland Department of Natural Resources (QDNR) (2000) Guidelines for using freewater surface constructed wetlands to treat municipal sewage. QDNR, Brisbane

    Google Scholar 

  51. Vymazal J, Brix H, Cooper PF, Haberl R, Perfler R, Laber J (1998) Removal mechanisms and types of constructed wetlands. In: Vymazal J, Brix H, Cooper PF, Haberl R, Perfler R (eds) Constructed wetlands for wastewater treatment in Europe. Backhuys, Leiden, pp 17–66

    Google Scholar 

  52. Richardson CJ (1985) Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228:1424–1427

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Sundblad K, Wittgren H-B (1989) Glyceria maxima for wastewater nutrient removal and forage production. Biol Waste 27:29–42

    Article  CAS  Google Scholar 

  54. Gersberg RM, Gearhart RA, Ives M (1989) Pathogen removal in constructed wetlands. In: Hammer DA (ed) Constructed wetlands for wastewater treatment. Lewis, Chelsea, pp 431–446

    Google Scholar 

  55. Lakatos G (1998) Hungary. In: Vymazal J, Brix H, Cooper PF, Green MB, Haberl R (eds) Constructed wetlands for wastewater treatment in Europe. Backhuys, Leiden, pp 191–206

    Google Scholar 

  56. Ewel KC, Odum HT (eds) (1984) Cypress swamps. University of Florida Press, Gainesville

    Google Scholar 

  57. Kadlec RH, Tilton DL (1979) The use of freshwater wetlands as a tertiary wastewater treatment alternative. CRC Crit Rev Environ Control 9:185–212

    Article  CAS  Google Scholar 

  58. Litchfield DK, Schatz DD (1989) Constructed wetlands for wastewater treatment at Amoco Oil Company’s Mandan, North Dakota refinery. In: Hammer DA (ed) Constructed wetlands for wastewater treatment. Lewis, Chelsea, pp 233–237

    Google Scholar 

  59. Chan E, Bursztynsky TA, Hantzsche N, Litwin YJ (1982) The use of wetlands for water pollution control. U.S. EPA Report EPA-600/2-82-086. Municipal Environmental Research Lab, Cincinnati

    Google Scholar 

  60. Wieder RK (1989) A survey of constructed wetlands for acid coal mine drainage treatment in the eastern United States. Wetlands 9:299–315

    Article  Google Scholar 

  61. Kadlec RH (2003) Status of treatment wetlands in North America. In: Dias V, Vymazal J (eds) Proc. Conf. The use of aquatic macrophytes for wastewater treatment in constructed wetlands. ICN and INAG, Lisbon, pp 363–401

    Google Scholar 

  62. Greenway M, Woolley A (1999) Constructed wetlands in Queensland: performance efficiency and nutrient bioaccumulation. Ecol Eng 12:39–55

    Article  Google Scholar 

  63. Tanner CC, Nguyen ML, Sukias JPS (2005) Nutrient removal by a constructed wetland treating subsurface drainage from a grazed dairy pasture. Agric Ecosyst Environ 105:145–162

    Article  CAS  Google Scholar 

  64. Kyambadde J, Kansiime F, Dalhammar G (2005) Nitrogen and phosphorus removal in substrate-free pilot constructed wetlands with horizontal surface flow in Uganda. Water Air Soil Pollut 165:37–59

    Article  ADS  CAS  Google Scholar 

  65. Van Oostrom AJ (1995) Nitrogen removal in constructed wetlands treating nitrified meat processing effluent. Water Sci Technol 32(3):137–148

    Article  Google Scholar 

  66. Brix H (1987) Treatment of wastewater in the rhizosphere of wetland plants – the root zone method. Water Sci Technol 19:107–118

    Article  CAS  Google Scholar 

  67. Vymazal J (2001) Types of constructed wetlands for wastewater treatment: their potential for nutrient removal. In: Vymazal J (ed) Transformations of nutrients in natural and constructed wetlands. Backhuys, Leiden, pp 1–93

    Google Scholar 

  68. Kickuth R (1982) A low-cost process for purification of municipal and industrial waste water. Der Tropenlandwirt 83:141–154

    Google Scholar 

  69. Kickuth R (1984) Das Wurzelraumverfahren in der praxis. Landschaft Stadt 16:145–153

    Google Scholar 

  70. Haberl R, Perfler R (1990) Seven years of research work and experience with wastewater treatment by a reed bed system. In: Cooper PF, Findlater BC (eds) Constructed wetlands in water pollution control. Pergamon Press, Oxford, pp 205–214

    Chapter  Google Scholar 

  71. Cooper PF, Green MB (1995) Reed bed treatment systems for sewage treatment – the first 10 years experience. Water Sci Technol 32:317–327

    Article  CAS  Google Scholar 

  72. Vymazal J, Brix H, Cooper PF, Green MB, Haberl R (eds) (1998) Constructed wetlands for wastewater treatment in Europe. Backhuys, Leiden

    Google Scholar 

  73. Fetter CW, Sloey WE, Spangler FL (1976) Potential replacement of septic tank drain fields by artificial marsh wastewater treatment systems. Ground Water 14:1–7

    Article  Google Scholar 

  74. Spangler FL, Sloey WE, Fetter CW Jr (1976) Artificial and natural marshes as wastewater treatment systems in Wisconsin. In: Tilton DL, Kadlec RH, Richardson CJ (eds) Freshwater wetlands and sewage effluent disposal. University of Michigan, Ann Arbor, pp 215–240

    Google Scholar 

  75. Small M, Wurm C (1977) Data report. Meadow/Marsh/Pond System. Brookhaven National Laboratory, BNL 50675

    Google Scholar 

  76. Wolverton BC (1987) Artificial marshes for wastewater treatment. In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia, Orlando, pp 141–152

    Google Scholar 

  77. Gersberg RM, Elkins BV, Goldman CR (1983) Nitrogen removal in artificial wetlands. Water Res 17:1009–1014

    Article  CAS  Google Scholar 

  78. Steiner GR, Watson JT, Hammer DA, Harker DF Jr (1987) Municipal wastewater treatment with artificial wetlands: a TVA/Kentucky demonstration. In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia, Orlando, pp 923–932

    Google Scholar 

  79. Finlayson CM, Chick AJ (1983) Testing the potential of aquatic plants to treat abattoir effluent. Water Res 17:415–422

    Article  CAS  Google Scholar 

  80. Bavor HJ, Roser DJ, McKersie S (1987) Nutrient removal using shallow lagoon-solid matrix macrophyte systems. In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia, Orlando, pp 227–235

    Google Scholar 

  81. Davison L, Pont D, Bolton K, Headley T (2006) Dealing with nitrogen in subtropical Australia: seven case studies in the diffusion of ecotechnological innovation. Ecol Eng 28:213–223

    Article  Google Scholar 

  82. Wood A (1990) The application of artificial wetlands in South Africa. In: Cooper PF, Findlater BC (eds) Constructed wetlands in water pollution control. Pergamon Press, Oxford, pp 235–244

    Chapter  Google Scholar 

  83. Byekwaso E, Kansiime F, Logstrum J, Andersen S (2002) The optimisation of a reed bed filter for effluent treatment at Kasese Cobalt Company Limited – Uganda. In: Proceedings of the 8th international conference wetland systems for water pollution control. University of Dar es Salaam, Tanzania, pp 660–668

    Google Scholar 

  84. Kaseva ME (2004) Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater – a tropical case study. Water Res 38:681–687

    Article  CAS  PubMed  Google Scholar 

  85. Wang J, Cai X, Chen Y, Yang Y, Liang M, Zhang Y, Wang Z, Li Q, Liao X (1994) Analysis of the configuration and the treatment effect of constructed wetland wastewater treatment system for different wastewaters in South China. In: Proceedings of the 4th international conference wetland systems for water pollution control. ICWS’94 Secretariat, Guangzhou, P.R. China, pp 114–120

    Google Scholar 

  86. Juwarkar AS, Verma M, Meshram J, Bal AS, Juwarkar A (1992) Wastewater treatment in constructed wetlands. In: Proceedings of the 3rd international conference wetland systems for water pollution control. IWA and University of Western Sydney, pp 35.1–35.4

    Google Scholar 

  87. Lee CY, Lee CC, Lee FY, Tseng SK, Liao CJ (2004) Performance of subsurface flow constructed wetland taking pretreated swine effluent under heavy loads. Bioresour Technol 92:173–179

    Article  CAS  PubMed  Google Scholar 

  88. Lin YF, **g SR, Lee DY, Chang YF, Chen YM, Shih KC (2005) Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environ Pollut 134:411–421

    Article  CAS  PubMed  Google Scholar 

  89. Dallas S, Ho G (2005) Subsurface flow reedbeds using alternative media for the treatment of domestic greywater in Monteverde, Costa Rica, Central America. Water Sci Technol 51(10):119–128

    Article  CAS  PubMed  Google Scholar 

  90. Platzer M, Cáceresy V, Fong N, Haberl R (2002) Investigations and experiences with subsurface flow constructed wetlands in Nicaragua, Central America. In: Proceedings of the 8th international conference on wetland systems for water pollution control. University of Dar es Salaam and IWA, Arusha, pp 350–365

    Google Scholar 

  91. Cooper PF, Boon AG (1987) The use of Phragmites for wastewater treatment by the Root Zone Method: the UK approach. In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia, Orlando, pp 153–174

    Google Scholar 

  92. Young TC, Collins AG, Theis TL (2000) Subsurface flow wetland for wastewater treatment at Minoa. Report to NYSERDA and U.S. EPA, Clarkson University, New York

    Google Scholar 

  93. Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35(5):11–17

    Article  CAS  Google Scholar 

  94. Drew MC (1979) Plant responses to anaerobic conditions in soil and solution culture. Curr Adv Plant Sci 11:36.1–36.14

    Google Scholar 

  95. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Vohla C, Põldvere E, Noorvee A, Kuusemets V, Mander Ü (2005) Alternative filter media for phosphorus removal in a horizontal subsurface flow constructed wetland. J Environ Sci Health 40:1251–1264

    Article  CAS  Google Scholar 

  97. Vymazal J (2005) Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: a review. J Environ Sci Health 40A:1355–1367

    Article  Google Scholar 

  98. Decamp O, Warren A (2000) Investigation of Escherichia coli removal in various designs of subsurface flow wetlands used for wastewater treatment. Ecol Eng 14:293–299

    Article  Google Scholar 

  99. Greiner RW, de Jong J (1984) The use of Marsh Plants for the treatment of waste water in areas designated for recreation and tourism. RIJP report no. 225, Lelystad, The Netherlands

    Google Scholar 

  100. Cooper PF (2005) The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates. Water Sci Technol 51(9):81–90

    Article  CAS  PubMed  Google Scholar 

  101. Weedon CN (2003) Compact vertical flow reed bed system – first two years performance. Water Sci Technol 48(5):15–23

    Article  CAS  PubMed  Google Scholar 

  102. Molle P, Liénard A, Boutin C, Merlin G, Iwema A (2005) How to treat raw with constructed wetlands: an overview of French systems. Water Sci Technol 51(9):11–21

    Article  CAS  PubMed  Google Scholar 

  103. Salati E Jr, Salati E, Salati E (1999) Wetland projects developed in Brazil. Water Sci Technol 40(3):19–25

    Article  CAS  Google Scholar 

  104. Boutin C (1987) Domestic wastewater treatment in tanks planted with rooted macrophytes: case study, description of the system, design criteria, and efficiency. Water Sci Technol 19(10):29–40

    Article  CAS  Google Scholar 

  105. Burka U, Lawrence P (1990) A new community approach to wastewater treatment with higher water plants. In: Cooper PF, Findlater BC (eds) Constructed wetlands in water pollution control. Pergamon Press, Oxford, pp 359–371

    Chapter  Google Scholar 

  106. Mæhlum T, Stålnacke P (1999) Removal efficiency of three cold-climate constructed wetlands treating domestic wastewater: effects of temperature, seasons, loading rates and input concentrations. Water Sci Technol 40(3):273–281

    Article  Google Scholar 

  107. Rousseau DPL, Vanrolleghem PA, De Pauw N (2004) Constructed wetlands in Flanders: a performance analysis. Ecol Eng 23:151–163

    Article  Google Scholar 

  108. Brix H, Johansen NH (1999) Treatment of domestic sewage in a two-stage constructed wetland – design principles. In: Vymazal J (ed) Nutrient cycling and retention in natural and constructed wetlands. Backhuys, Leiden, pp 155–163

    Google Scholar 

  109. Brix H, Arias CA, Johansen NH (2003) Experiments in a two-stage constructed wetland system: nitrification capacity and effects of recycling on nitrogen removal. In: Vymazal J (ed) Wetlands-nutrients, metals and mass cycling. Backhuys, Leiden, pp 237–258

    Google Scholar 

  110. Masi F, Conte G, Martinuzzi N, Pucci B (2002) Winery high organic content wastewaters treated by constructed wetlands in Mediterranean climate. In: Proceedings of the 8th international conference wetland systems for water pollution control. University of Dar-es-Salaam, Tanzania and IWA, pp 274–282

    Google Scholar 

  111. Mander Ü, Teiter S, Lõhmus K, Mauring T, Nurk K, Augustin J (2003) Emission rates of N2O and CH4 in riparian alder forest and subsurface flow constructed wetland. In: Vymazal J (ed) Wetlands: nutrients, metals and mass cycling. Backhuys, Leiden, pp 259–279

    Google Scholar 

  112. Brix H, Koottatep T, Laugesen CH (2006) Re-establishment of wastewater treatment in tsunami affected areas of Thailand by the use of constructed wetlands. In: Dias V, Vymazal J (eds) Proceedings of the 10th international conference wetland systems for water pollution control, MAOTDR 2006, Lisbon, Portugal, pp 59–67

    Google Scholar 

  113. Vymazal J (2009) The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35:1–17

    Article  Google Scholar 

  114. Vymazal J, Kröpfelová L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer, Dordrecht

    Book  Google Scholar 

  115. Huang Y, Latorre A, Barcelo D, Garcia J, Aqguirre P, Mujeriego R, Bayona JM (2004) Factors affecting linear alkylbenzene sulfonates removal in subsurface flow constructed wetlands. Environ Sci Technol 38:2657–2663

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Matamoros V, Arias C, Brix H, Bayona JM (2009) Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products. Water Res 43:55–62

    Article  CAS  PubMed  Google Scholar 

  117. Vymazal J, Kröpfelová L (2009) Removal of organics in constructed wetlands with horizontal sub-surface flow: a review of the field experience. Sci Total Environ 407:3911–3922

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Shutes RBE, Revitt DM, Scholes LNL, Forshaw M, Winter B (2001) An experimental constructed wetland system for the treatment of highway runoff in the UK. Water Sci Technol 44(11–12):571–578

    Article  CAS  PubMed  Google Scholar 

  119. Headley TR, Huett DO, Davison L (2001) The removal of nutrients from plant nursery irrigation runoff in subsurface horizontal-flow wetlands. Water Sci Technol 44(11–12):77–84

    Article  CAS  PubMed  Google Scholar 

  120. Worrall P, Revitt DM, Prickett G, Brewer D (2002) Constructed wetlands for airport runoff – the London Heathrow experience. In: Nehring KW, Brauning SE (eds) Wetlands and remediation II. Battelle Press, Columbus, pp 177–186

    Google Scholar 

  121. Urbanc-Bercic O (1997) Constructed wetlands for the treatment of landfill leachates: the Slovenian experience. Wetl Ecol Manag 4:189–197

    Article  Google Scholar 

  122. Mæhlum T, Warner WS, Stålnacke P, Jenssen PD (1999) Leachate treatment in extended aeration lagoons and constructed wetlands in Norway. In: Mulamoottil G, McBean EA, Revers F (eds) Constructed wetlands for the treatment of landfill leachates. Lewis/CRC Press, Boca Raton, pp 151–163

    Google Scholar 

  123. Korkusuz EA, Beglioglu M, Demirer GN (2005) Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey. Ecol Eng 24:187–200

    Article  Google Scholar 

  124. Vohla C, Põldvere E, Noorvee A, Kuusemets V, Mander Ü (2005) Alternative filter media for phosphorous removal in a horizontal subsurface flow constructed wetland. J Environ Sci Health A 40:1251–1264

    Article  CAS  Google Scholar 

  125. Maddison M, Soosaar K, Mauring T, Mander Ü (2009) The biomass and nutrient and heavy metal content of cattails and reeds in wastewater treatment wetlands for the production of construction material in Estonia. Desalination 246:120–128

    Article  CAS  Google Scholar 

  126. Zurita F, De Anda J, Belmont M (2009) Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecol Eng 35:861–869

    Article  Google Scholar 

Books and Reviews

  • Cooper PF (ed) (1990) European design and operation guidelines for reed bed treatment systems. Prepared for the European Community/European Water Pollution Control Association Emergent Hydrophyte Treatment System Expert Contact Group WRc report UI 17

    Google Scholar 

  • Cooper PF, Findlater BC (eds) (1990) Constructed wetlands in water pollution control. Pergamon Press, Oxford

    Google Scholar 

  • Cooper PF, Job GD, Green MB, Shutes RBE (1996) Reed beds and constructed wetlands for wastewater treatment. Water Research Center, Swindon

    Google Scholar 

  • Hammer DA (ed) (1989) Constructed wetlands for wastewater treatment. Lewis, Chelsea

    Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. CRC Press, Boca Raton

    Google Scholar 

  • Kadlec RH, Wallace SD (2008) Treatment wetlands, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Mander Ü, Jenssen P (eds) (2003) Constructed wetlands for wastewater treatment in cold climates. WIT Press, Southampton

    Google Scholar 

  • Mitsch WJ, Gossselink JG (2007) Wetlands, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Mitsch WJ, Gosselink JG, Anderson CJ, Zhang L (2009) Wetland ecosystems. Wiley, Hoboken

    Google Scholar 

  • Moshiri GA (ed) (1993) Constructed wetlands for water quality improvement. CRC Press/Lewis, Boca Raton

    Google Scholar 

  • Mulamoottil G, McBean AE, Revers F (eds) (1999) Constructed wetlands for the treatment of landfill leachates. Lewis/CRC Press, Boca Raton

    Google Scholar 

  • Price T, Probert D (1997) Role of constructed wetlands in environmentally-sustainable developments. Appl Energy 57:129–174

    Article  CAS  Google Scholar 

  • Reddy KR, Smith WH (eds) (1987) Aquatic plants for wastewater treatment and resource recovery. Magnolia Publishing, Orlando

    Google Scholar 

  • Scholz M (2006) Wetland systems to control urban runoff. Elsevier, Amsterdam

    Google Scholar 

  • Tinner RW (1999) Wetland indicators. A guide to wetland identification, delineation, classification, and map**. Lewis, Boca Raton

    Google Scholar 

  • Tourbier J, Pierson RW (eds) (1976) Biological control of water pollution. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  • Vymazal J (ed) (1999) Nutrient cycling and retention in natural and constructed wetlands. Backhuys, Leiden

    Google Scholar 

  • Vymazal J (ed) (2001) Transformations of nutrients in natural and constructed wetlands. Backhuys, Leiden

    Google Scholar 

  • Vymazal J (ed) (2003) Wetlands – nutrients, metals and mass cycling. Backhuys, Leiden

    Google Scholar 

  • Vymazal J (ed) (2005) Natural and constructed wetlands: nutrients, metals and management. Backhuys, Leiden

    Google Scholar 

  • Vymazal J (2008) Wastewater treatment, plant dynamics and management in constructed and natural wetlands. Springer, Dordrecht

    Book  Google Scholar 

  • Vymazal J, Kröpfelová L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vymazal, J. (2012). Wastewater Treatment and Control Through Wetlands. In: Zhang, H.X. (eds) Water Sustainability. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2466-1_265

Download citation

Publish with us

Policies and ethics

Navigation