Therapeutic Potential of Cyanobacteria as a Producer of Novel Bioactive Compounds

  • Chapter
  • First Online:
Cyanobacterial Biotechnology in the 21st Century

Abstract

Cyanobacteria are photosynthetic prokaryotes that have a variety of biological activities and can be used as dietary supplements. Because of its high nutritional, protein, and digestibility content, it is utilized as a meal supplement. Spirulina sp., Anabaena sp., Microcystis sp., Nostoc sp., Lyngbya sp., Oscillatoria sp., and other cyanobacteria create a wide range of secondary bioactive metabolites with diverse biological functions. Cyanobacteria produce various physiologically active and chemically diverse compounds such as saccharides, fatty acid amides, lipopeptides, cyclic and acyclic peptides, and alkaloids. More than half of marine cyanobacteria could be used to extract bioactive compounds that can destroy cancer cells by causing apoptosis. Their effectiveness as an antiviral, antitumor, antibacterial, anti-HIV, and dietary additive is extensively documented. However, such drugs are in various phases of clinical studies, and only a few have made it to the market. This chapter examines the bioactive chemicals in cyanobacteria with antiprotozoal, antibacterial, anti-inflammatory, anticancer, antioxidant, and antiviral properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Hack ME, Abdelnour S, Alagawany M, Abdo M, Sakr MA, Khafaga AF, Gebriel MG (2019) Microalgae in modern cancer therapy: current knowledge. Biomed Pharmacother 111:42–50

    Article  CAS  PubMed  Google Scholar 

  • Asthana RK, Srivastava A, Kayastha AM, Nath G, Singh SP (2006) Antibacterial potential of γ-linolenic acid from Fischerella sp. colonizing neem tree bark. World J Microbiol Biotechnol 22:443–448

    Article  CAS  Google Scholar 

  • Baran PS, Richter JM (2005) Enantioselective total syntheses of welwitindolinone A and fischerindoles I and G. J Am Chem Soc 127:15394–15396

    Article  CAS  PubMed  Google Scholar 

  • Becher PG, Beuchat J, Gademann K, Jüttner F (2005) Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J Nat Prod 68:1793–1795

    Article  CAS  PubMed  Google Scholar 

  • Belay A (2002) The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutraceutical Assoc 5:27–48

    Google Scholar 

  • Bhaskar SU, Gopalaswamy G, Raghu R (2005) A simple method for efficient extraction and purification of C-phycocyanin from Spirulina platensis Geitler

    Google Scholar 

  • Bin ZS, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus. Available from: https://doi.org/10.7759/cureus.1403

  • Bokesch HR, O'Keefe BR, McKee TC, Pannell LK, Patterson GM, Gardella RS, Boyd MR (2003) A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Biochemistry 42:2578–2584

    Article  CAS  PubMed  Google Scholar 

  • Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  • Cane DE, Walsh CT (1999) The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem Biol 6:R319–R325

    Article  CAS  PubMed  Google Scholar 

  • Challem JJ, Passwater RA, Mindell EM (1981) Spirulina. Keats Publishing, New Canaan, CT

    Google Scholar 

  • Chauhan A, Chauhan G, Gupta PC, Goyal P, Kaushik P (2010) In vitro antibacterial evaluation of Anabaena sp. against several clinically significant microflora and HPTL Canalysis of its active crude extracts. Indian J Pharmacol 42:105–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherng SC, Cheng SN, Tarn A, Chou TC (2007) Anti-inflammatory activity of c-phycocyanin in lipopolysaccharide-stimulated RAW 264.7 macrophages. Life Sci 81:1431–1435

    Article  CAS  PubMed  Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark BR, Engene N, Teasdale ME, Rowley DC, Matainaho T, Valeriote FA, Gerwick WH (2008) Natural products chemistry and taxonomy of the marine cyanobacterium Blennothrix cantharidosmum. J Nat Prod 71:1530–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen Z, Reungjitchachawali M, Siangdung W, Tanticharoen M (1993) Production and partial purification of γ-linolenic acid and some pigments from Spirulina platensis. J Appl Phycol 5:109–115

    Article  CAS  Google Scholar 

  • Davidson BS (1995) New dimensions in natural products research: cultured marine microorganisms. Curr Opin Biotechnol 6:284–291

    Article  CAS  Google Scholar 

  • De la Coba F, Aguilera J, De Galvez MV, Alvarez M, Gallego E, Figueroa FL, Herrera E (2009) Prevention of the ultraviolet effects on clinical and histopathological changes, as well as the heat shock protein-70 expression in mouse skin by topical application of algal UV-absorbing compounds. J Dermatol Sci 55:161–169

    Article  PubMed  Google Scholar 

  • Demay J, Bernard C, Reinhardt A, Marie B (2019) Natural products from cyanobacteria: focus on beneficial activities. Mar Drugs 17:320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksen NT (2008) Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14

    Article  CAS  PubMed  Google Scholar 

  • Estela Silva-Stenico M, Kaneno R, Zambuzi F, Vaz M, Alvarenga D, Fiore M (2013) Natural products from cyanobacteria with antimicrobial and antitumor activity. Curr Pharm Biotechnol 14:820–828

    Article  Google Scholar 

  • Euler US, Eliassen R (1967) Prostaglandins. Academic Press, New York

    Google Scholar 

  • Fernández-Prada C, Douanne N, Minguez-Menendez A, Pena J, Tunes LG, Pires DE, Monte-Neto RL (2019) Repurposed molecules: a new hope in tackling neglected infectious diseases. In: Silico drug design, pp 119−160

    Google Scholar 

  • Ghanbari R (2019) Review on the bioactive peptides from marine sources: indication for health effects. Int J Pept Res Ther 25:1187–1199

    Article  CAS  Google Scholar 

  • Harrigan GG, Yoshida WY, Moore RE, Nagle DG, Park PU, Biggs J, Valeriote FA (1998) Isolation, structure determination, and biological activity of dolastatin 12 lyngbyastatin 1 from Lyngbya majuscula/Schizothrix calcicola cyanobacterial assemblages. J Nat Prod 61:1221–1225

    Article  CAS  PubMed  Google Scholar 

  • Hayashi O, Hirahashi T, Katoh T, Miyajima H, Hirano T, Okuwaki Y (1998) Class-specific influence of dietary Spirulina platensis on antibody production in mice. J Nutr Sci Vitaminol 44:841–851

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Corona A, Nieves I, Meckes M, Chamorro G, Barron BL (2002) Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antivir Res 56:279–285

    Article  PubMed  Google Scholar 

  • Horrobin DF (2000) Essential fatty acid metabolism and modification in atopic eczema. Am J Clin Nutr 71:367–372

    Article  Google Scholar 

  • Jenke-Kodama H, Sandmann A, Müller R, Dittmann E (2005) Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 22:2027–2039

    Article  CAS  PubMed  Google Scholar 

  • Jensen GS, Ginsberg DI, Huerta P, Citton M, Drapeau C (2000) Consumption of Aphanizomenon flos-aquae has rapid effects on the circulation and function of immune cells in humans. JANA 2:50–58

    Google Scholar 

  • Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH (2009) New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 13:216–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanekiyo K, Hayashi K, Takenaka H, Lee JB, Hayashi T (2007) Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga Nostoc flagelliforme. Biol Pharm Bull 30:1573–1575

    Article  CAS  PubMed  Google Scholar 

  • KapuÅ›cik A, Hrouzek P, Kuzma M, Bártová S, Novák P, Jokela J, Kopecký J (2013) Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent. Chem Bio Chem 14:2329–2337

    Article  PubMed  Google Scholar 

  • Kernoff PB, Willis A, Stone KJ, Davies JA, McNicol GP (1977) Antithrombotic potential of dihomogamma-linolenic acid in man. Br Med J 2:1441–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, Chaicumpa W (2019) A comprehensive review of autophagy and its various roles in infectious, non-infectious, and lifestyle diseases: current knowledge and prospects for disease prevention, novel drug design, and therapy. Cell 8:674

    Article  CAS  Google Scholar 

  • Kini S, Divyashree M, Mani MK, Mamatha BS (2020) Algae and cyanobacteria as a source of novel bioactive compounds for biomedical applications. In: Advances in cyanobacterial biology, pp 173–194

    Google Scholar 

  • Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm 9:1309–1323

    Article  CAS  Google Scholar 

  • Kodani S, Ishida K, Murakami M (1998) Aeruginosin 103-A, a thrombin inhibitor from the cyanobacterium Microcystis viridis. J Nat Prod 61:1046–1048

    Article  CAS  PubMed  Google Scholar 

  • Konícková R, Vanková K, Vaníková J, Vánová K, Muchová L, Subhanová I, Vítek L (2014) Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann Hepatol 13:273–283

    Article  PubMed  Google Scholar 

  • Kronick MN, Grossman PD (1983) Immunoassay techniques with fluorescent phycobiliprotein conjugates. Clin Chem 29:1582–1586

    Article  CAS  PubMed  Google Scholar 

  • Kushak R, VanCott E, Drapeau C, Winter H (1999) Effect of algae Aphanizomenon flos aquae on digestive enzyme activity and polyunsaturated fatty acids level in blood plasma. Gastroenterology 4:A559–A559

    Google Scholar 

  • Kwan JC, Eksioglu EA, Liu C, Paul VJ, Luesch H (2009) Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J Med Chem 52:5732–5747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung PO, Lee HH, Kung YC, Tsai MF, Chou TC (2013) Therapeutic effect of C-phycocyanin extracted from blue-green algae in a rat model of acute lung injury induced by lipopolysaccharide. eCAM

    Google Scholar 

  • Liu Y, Xu L, Cheng N, Lin L, Zhang C (2000) Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukaemia K562 cells. J Appl Phycol 12:125–130

    Article  CAS  Google Scholar 

  • Luesch H, Yoshida WY, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2002) Symplostatin 3, a new dolastatin 10 analogue from the marine cyanobacterium Symploca sp. VP452. J Nat Prod 65:16–20

    Article  CAS  PubMed  Google Scholar 

  • McCarty MF (2015) Hypothesis: Spirulina may slow the growth and spread of ovarian cancer by interfering with the growth factor activity of lysophosphatidic acid. J Mol Genet Med 9:184

    Article  Google Scholar 

  • McPhail KL, Correa J, Linington RG, González J, Ortega-Barría E, Capson TL, Gerwick WH (2007) Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70:984–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalak I, Chojnacka K (2015) Algae as production systems of bioactive compounds. Eng Life Sci 15:160–176

    Article  CAS  Google Scholar 

  • Mori T, Boyd MR (2001) Cyanovirin-N, a potent human immunodeficiency virus-inactivating protein, blocks both CD4-dependent and CD4-independent binding of soluble gp120 (sgp120) to target cells, inhibits sCD4-induced binding of sgp120 to cell-associated CXCR4 and dissociates bound sgp120 from target cells. Antimicrob Agents Chemother 45:664–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morliere P, Maziere JC, Santus R (1998) Tolyporphin: a natural product from cyanobacteria with potent photosensitizing activity against tumour cells in vitro and in vivo. Cancer Res 58:3571–3578

    CAS  PubMed  Google Scholar 

  • Mukund S, Sivasubramanian V (2014) Anticancer activity of Oscillatoria terebriformis cyanobacteria in human lung cancer cell line a:549. Int J Appl Biol Pharm 5:2

    Google Scholar 

  • Mundt S, Kreitlow S, Jansen R (2003) Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051. J Appl Phycol 15:263–267

    Article  CAS  Google Scholar 

  • Muniaraj S, Subramanian V, Srinivasan P, Palani M (2018) In silico and in vitro studies on Lyngbya majuscula using against lung cancer cell line (A549). Pharm J 10:421

    CAS  Google Scholar 

  • Murakami M, Okita Y, Matsuda H, Okino T, Yamaguchi K (1994) Aeruginosin 298-A, a thrombin and trypsin inhibitor from the blue-green alga Microcystis aeruginosa (NIES-298). Tetrahedron 35:3129–3132

    Article  CAS  Google Scholar 

  • Nowruzi B, Haghighat S, Fahimi H, Mohammadi E (2018) Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. J Pharm Health Serv Res 9:5–12

    Article  Google Scholar 

  • Okino T, Matsuda H, Murakami M, Yamaguchi K (1993) Microginin, an angiotensin-converting enzyme inhibitor from the blue-green alga Microcystis aeruginosa. Tetrahedron 34:501–504

    Article  CAS  Google Scholar 

  • Oyamada C, Kaneniwa M, Ebitani K, Murata M, Ishihara K (2008) Mycosporine-like amino acids extracted from scallop (Patinopecten yessoensis) ovaries: UV protection and growth stimulation activities on human cells. Mar Biotechnol 10:141–150

    Article  CAS  Google Scholar 

  • Pabon MM, Jernberg JN, Morganti J, Contreras J, Hudson CE, Klein RL, Bickford PC (2012) A spirulina-enhanced diet provides neuroprotection in an α-synuclein model of Parkinson’s disease

    Google Scholar 

  • Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiang HU, Zheungu H, Cohen Z, Richond A (1997) Enhancement of eicosapentaenoic acid (EPA) and γ-linolenic acid (GLA) production by manipulating the algal density of outdoor cultures of Monodus subterraneus (Eustigmatophyta) and Spirulina platensis (Cyanobacteria). Eur J Phycol 32:81–86

    Article  Google Scholar 

  • Qiu B, Liu J, Liu Z, Liu S (2002) Distribution and ecology of the edible cyanobacterium Ge-**an-Mi (Nostoc) in rice fields of Hefeng County in China. J Appl Phycol 14:423–429

    Article  CAS  Google Scholar 

  • Rasmussen HE, Blobaum KR, Park YK, Ehlers SJ, Lu F, Lee JY (2008) Lipid extract of Nostoc commune var. sphaeroides Kutzing, a blue-green alga, inhibits the activation of sterol regulatory element-binding proteins in HepG2 cells. Nutr J 138:476–481

    Article  CAS  Google Scholar 

  • Rasmussen HE, Blobaum KR, Jesch ED, Ku CS, Park YK, Lu F, Lee JY (2009) Hypocholesterolemic effect of Nostoc commune var. sphaeroides Kützing, an edible blue-green alga. Eur J Nutr 48:387–394

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Incharoensakdi A (2014a) UV radiation-induced biosynthesis, stability and antioxidant activity of mycosporine-like amino acids (MAAs) in a unicellular cyanobacterium Gloeocapsa sp. CU2556. J Photochem Photobio B Bio 130:287–292

    Article  CAS  Google Scholar 

  • Rastogi RP, Incharoensakdi A (2014b) Characterization of UV-screening compounds, mycosporine-like amino acids, and scytonemin in the cyanobacterium Lyngbya sp. CU2555. FEMS Microbiol Ecol 87:244–256

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Sinha RP, Incharoensakdi A (2013) Partial characterization, UV-induction and photoprotective function of sunscreen pigment, scytonemin from Rivularia sp. HKAR-4. Chemosphere 93:1874–1878

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Thomas TL (1996) Expression of a cyanobacterial Δ6-desaturase gene results in γ-linolenic acid production in transgenic plants. Nat Biotechnol 14:639–642

    Article  CAS  PubMed  Google Scholar 

  • Reddy CM, Bhat VB, Kiranmai G, Reddy MN, Reddanna P, Madyastha KM (2000) Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem Biophys Res Commun 277:599–603

    Article  CAS  PubMed  Google Scholar 

  • Reinert RR, Low DE, Rossi F, Zhang X, Wattal C, Dowzicky MJ (2007) Antimicrobial susceptibility among organisms from the Asia/Pacific rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. J Antimicrob Chemother 60:1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Rickards RW, Rothschild JM, Willis AC, de Chazal NM, Kirk J, Kirk K, Smith GD (1999) Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55:13513–13520

    Article  CAS  Google Scholar 

  • Rimbau V, Camins A, Pubill D, Sureda FX, Romay C, González R, Pallàs M (2001) C-phycocyanin protects cerebellargranule cells from low potassium/serum deprivation-induced apoptosis. Naunyn Schmiedeberg's Arch Pharmacol 364:96–104

    Article  CAS  Google Scholar 

  • Romay CH, Gonzalez R, Ledon N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216

    Article  CAS  PubMed  Google Scholar 

  • Sanchez LM, Lopez D, Vesely BA, Della Togna G, Gerwick WH, Kyle DE, Linington RG (2010) Almiramides A-C: Discovery and development of a new class of leishmaniasis lead compounds. J Med Chem 53:4187–4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangthongpitag K, Delaney SF, Rogers PL (1996) Evaluation of four fresh-water unicellular cyanobacteria as potential hosts for mosquitocidal toxins. Biotechnol Lett 18:175–180

    Article  CAS  Google Scholar 

  • Sarmadi B, Ismail A, Hamid M (2011) Antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of cocoa (Theobroma cacao L.) autolysates. Food Res Int 44:290–296

    Article  CAS  Google Scholar 

  • Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8

    Google Scholar 

  • Seshadri CV (1993) All India coordinated project on Spirulina. Shri Amm Murugappa Chettiar Research Center (MCRC), Chennai

    Google Scholar 

  • Sharma NK, Tiwari SP, Tripathi K, Rai AK (2011) Sustainability and cyanobacteria (blue-green algae): facts and challenges. J Appl Phycol 23:1059–1081

    Article  CAS  Google Scholar 

  • Simopoulos AP (1997) Nutrition tid-bites: essential fatty acids in health and chronic disease. Food Rev Int 13:623–631

    Article  CAS  Google Scholar 

  • Singh A, Čížková M, BiÅ¡ová K, Vítová M (2021) Exploring mycosporine-like amino acids (MAAs) as safe and natural protective agents against UV-induced skin damage. Antioxid 10:683

    Article  CAS  Google Scholar 

  • Stanier G (1988) Fine structure of cyanobacteria. In Meth Enzymol 167:157–172

    Article  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    Article  CAS  PubMed  Google Scholar 

  • Stevenson CS, Capper EA, Roshak AK, Marquez B, Eichman C, Jackson JR, Marshall LA (2002a) The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. J Pharmacol Exp Th 303:858–866

    Article  CAS  Google Scholar 

  • Stevenson CS, Capper EA, Roshak AK (2002b) Scytonemin-a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflamm Res 51:112–114

    Article  CAS  PubMed  Google Scholar 

  • Torres-Duran PV, Ferreira-Hermosillo A, Juarez-Oropeza MA (2007) Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of Mexican population: a preliminary report. Lipids Health Dis 6:1–8

    Article  Google Scholar 

  • Tyagi R, Kaushik BD, Kumar J (2014) Antimicrobial activity of some cyanobacteria. In: Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 463–470

    Chapter  Google Scholar 

  • Vasas G, Borbely G, Nanasi P, Nanasi PP (2010) Alkaloids from cyanobacteria with diverse, potent bioactivities. Mini Rev Med Chem 10:946–955

    Article  CAS  PubMed  Google Scholar 

  • Volk RB (2008) A newly developed assay for the quantitative determination of antimicrobial (anticyanobacterial) activity of both hydrophilic and lipophilic test compounds without any restriction. Microbiol Res 163:161–167

    Article  PubMed  Google Scholar 

  • Volkmann M, Gorbushina AA, Kedar L, Oren A (2006) Structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, from a halophilic cyanobacterium (Euhalothece sp.). FEMS Microbiol Lett 258:50–54

    Article  CAS  PubMed  Google Scholar 

  • Vonshak A (1997) Spirulina platensis arthrospira: physiology, cell-biology and biotechnology. CRC

    Book  Google Scholar 

  • Watanabe F, Takenaka S, Kittaka-Katsura H, Ebara S, Miyamoto E (2002) Characterization and bioavailability of vitamin B12-compounds from edible algae. J Nutr Sci Vitaminol 48:325–331

    Article  CAS  PubMed  Google Scholar 

  • Whitton BA, Potts M (2007) The ecology of cyanobacteria: their diversity in time and space. Springer Science & Business Media

    Google Scholar 

  • World Health Organization (2020) WHO report on cancer: setting priorities, investing wisely and providing care for all. World Health Organization, Geneva

    Google Scholar 

  • Zahra Z, Choo DH, Lee H, Parveen A (2020) Cyanobacteria: review of current potentials and applications. Environments 7:13

    Article  Google Scholar 

  • Zainuddin EN, Mentel R, Wray V, Jansen R, Nimtz M, Lalk M, Mundt S (2007) Cyclic depsipeptides, ichthyopeptins A and B, from Microcystis ichthyoblabe. J Nat Prod 70:1084–1088

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li L, Wu Q (2007) Protective effects of mycosporine-like amino acids of Synechocystis sp. PCC 6803 and their partial characterization. J Photochem Photobiol 86:240–245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head of Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, and DST-FIST for providing the necessary research facilities. The University Grants Commission, Government of India, New Delhi, is also acknowledged for providing Senior Research Fellowship (SRF) for financial assistance and ISLS, ISC, and BHU for instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Kumar Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, P., Singh, R.P., Kumar, A., Singh, P.K., Gupta, R.K. (2023). Therapeutic Potential of Cyanobacteria as a Producer of Novel Bioactive Compounds. In: Neilan, B., Passarini, M.R.Z., Singh, P.K., Kumar, A. (eds) Cyanobacterial Biotechnology in the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-99-0181-4_13

Download citation

Publish with us

Policies and ethics

Navigation