Cyanobacteria as Biofertilizers: Current Research, Commercial Aspects, and Future Challenges

  • Chapter
  • First Online:
Advances in Plant Microbiome and Sustainable Agriculture

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 20))

  • 787 Accesses

Abstract

Increase in global human population and depletion of natural resources of energy, the viable supply of food, and energy without posing any threat to the environment is the current demand of our society. With limiting land and growing population, the option of better eco-friendly management tools for increasing soil fertility and agricultural population promises a successful long-term food security. The use of synthetic fertilizers and pesticides in agricultural practices deteriorates environmental qualities. Since microbes have been known to contribute in determining the soil fertility, the structure of soil and sustainable green energy production, microalgae including cyanobacteria emerged as potential candidates for their application in the development of environment-friendly and sustainable agricultural practices. As natural biofertilizer algalization, cyanobacteria play an important role in the maintenance of soil structure by soil aggregation through polysaccharides, enhanced soil fertility, fixing atmospheric nitrogen (N) by reclamation, increase in soil pores by producing adhesive substances, increasing growth by excreting growth promoting hormones (auxin, GA, vitamins, amino acids), increasing water-holding capacity, decreasing soil salinity, increase in soil phosphate by excretion of organic acids, and recycling of solid wastes. Much attention has been paid to study cyanobacteria with beneficial effects in fields like rice, paddy, wheat, soybean, tomato, radish, cotton, maize, sugarcane, and many more. There are research on inoculants of heterocystous cyanobacteria genera, which are used as biofertilizers in crops by enhancing the plant shoot/root length, dry weight, and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams DG, Bergman B, Nierzwicki-Bauer SA, Duggan PS, Rai AN, Schüßler A (2013) Cyanobacterial-plant symbioses. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes springer. Springer, Berlin/Heidelberg, pp 359–400. https://doi.org/10.1007/978-3-642-30194-0_17

    Chapter  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. https://doi.org/10.1007/978-81-322-2776-2_21

    Chapter  Google Scholar 

  • Aslam MM, Karanja J, Bello SK (2019) Piriformospora indica colonization reprograms plants to improved P-uptake, enhanced crop performance, and biotic/abiotic stress tolerance. Physiol Mol Plant Pathol 106:232–237

    CAS  Google Scholar 

  • Ayesha A, Shahid R (2017) Green revolution: a review. Int J Adv Sci Res 3:129–137

    Google Scholar 

  • Baweja P, Kumar S, Kumar G (2019) Organic fertilizer from algae: a novel approach towards sustainable agriculture. In: Giri B, Prasad R, Wu Q-S, Varma A (eds) Biofertilizers for sustainable agriculture and environment. Springer, Cham, pp 353–370. https://doi.org/10.1007/978-3-030-18933-4_16

    Chapter  Google Scholar 

  • Bentzon-Tilia M, Traving SJ, Mantikci M, Knudsen-Leerbeck H, Hansen JL, Markager S, Riemann L (2015) Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME J 9:273

    CAS  PubMed  Google Scholar 

  • Berg G, Zachow C, Müller H, Philipps J, Tilcher R (2013) Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3:648–656

    Google Scholar 

  • Bravo-Fritz CP, Sáez-Navarrete CA, Herrera-Zeppelin LA, Varas-Concha F (2016) Multi-scenario energy-economic evaluation for a biorefinery based on microalgae biomass with application of anaerobic digestion. Algal Res 16:292–307

    Google Scholar 

  • Brocke HJ, Piltz B, Herz N, Abed RM, Palinska KA, John U, Den Haan J, de Beer D, Nugues MM (2018) Nitrogen fixation and diversity of benthic cyanobacterial mats on coral reefs in Curaçao. Coral Reefs 37:861–874

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    CAS  PubMed  Google Scholar 

  • Chikkaswamy BK (2015) Effect of cyanobacterial biofertilizer on soil nutrients and mulberry leaf equality and its impact on silkworm crops. Int J Adv Res Eng Appl Sci 4:1–15

    Google Scholar 

  • Dubey V, Verma RC (2009) Shelf life and colonization of soil by clay based cyanobacterial inocula. Indian J Exp Biol 47:222–224

    PubMed  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    CAS  PubMed  Google Scholar 

  • Flores E, López-Lozano A, Herrero A (2015) Nitrogen fixation in the oxygenic phototrophic prokaryotes (cyanobacteria): the fight against oxygen. Biol Nitrogen Fixat 3:879–890

    Google Scholar 

  • Flores E, Herrero A, Forchhammer K, Maldener I (2016) Septal junctions in filamentous heterocyst-forming cyanobacteria. Trends Microbiol 24:79–82

    CAS  PubMed  Google Scholar 

  • Flynn KJ, Greenwell HC, Lovitt RW, Shields RJ (2010) Selection for fitness at the individual or population levels: modelling effects of genetic modifications in microalgae on productivity and environmental safety. J Theor Biol 263:269–280

    PubMed  Google Scholar 

  • Ghumare VI, Rana MA, Gavkare OM, Khachi BA (2014) Bio-fertilizers-increasing soil fertility and crop productivity. J Ind Pollut Control 30:196–201

    Google Scholar 

  • Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae) prospects and challenges. Algal Res 2:79–97

    Google Scholar 

  • Himani P, Radha P, Bala SR, Ngangom B, Santosh B, Shobit T, Nirmala R (2015) Influence of cyanobacteria inoculation on the culturable microbiome and growth of rice. Microbiol Res 171:78–89

    Google Scholar 

  • Kaushik BD (2014) Developments in cyanobacterial biofertilizer. Proc Indian Natl Sci Acad 80:379–388

    Google Scholar 

  • Khatoon N, Pal R (2015) Microalgae in biotechnological application: a commercial approach. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy KV (eds) Plant biology and biotechnology. Springer, New Delhi, pp 27–47. https://doi.org/10.1007/978-81-322-2283-5_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS et al (2019a) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-019-01151-4

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A et al (2019b) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management. Volume 1: Rhizobacteria in abiotic stress management. Springer, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al (2019c) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability : from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kulasooriya SA, Magana-Arachchi DN (2016) Nitrogen fixing cyanobacteria: their diversity, ecology and utilisation with special reference to rice cultivation. J Natl Sci Found Sri Lanka 44:111–128

    CAS  Google Scholar 

  • Kumar N (2016) Effect of algal bio-fertilizer on the Vigna radiata: a critical review. Int J Eng Res Appl 6:85–94

    Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiol Res 156:87–93

    CAS  PubMed  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. https://doi.org/10.1007/978-81-322-2776-2_5

    Chapter  Google Scholar 

  • Lau NS, Matsui M, Abdullah AA (2015) Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. Biomed Res Int 2015:1–9

    Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24:3315–3335

    CAS  Google Scholar 

  • Mazid M, Khan TA (2015) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3:10–23

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    CAS  PubMed  Google Scholar 

  • Mishra U, Pabbi S (2004) Cyanobacteria: a potential biofertilizer for rice. Resonance 9:6–10

    Google Scholar 

  • Mohapatra B, Verma DK, Sen A, Panda BB, Asthir B (2013) Bio-fertilizers – a gateway to sustainable agriculture. Popular Kheti 1:97–106

    Google Scholar 

  • Moheimani NR, Parlevliet D, McHenry MP, Bahri PA, de Boer K (2015) Past, present and future of microalgae cultivation developments. In: Moheimani NR, McHenry MP, de Boer K, Bahri PA (eds) Biomass and biofuels from microalgae. Springer, Cham, pp 1–18. https://doi.org/10.1007/978-3-319-16640-7_1

    Chapter  Google Scholar 

  • Ningthoujam M, Habib K, Bano F, Zutshi S, Fatma T (2013) Exogenous osmolytes suppresses the toxic effects of malathion on Anabaena variabilis. Ecotox Environ Safe 94:21–27

    CAS  Google Scholar 

  • Nozue S, Katayama M, Terazima M, Kumazaki S (2017) Comparative study of thylakoid membranes in terminal heterocysts and vegetative cells from two cyanobacteria, Rivularia M-261 and Anabaena variabilis, by fluorescence and absorption spectral microscopy. Biochim Biophys Acta Bioenerg 1858(9):742–749

    Google Scholar 

  • Olmedo-Verd E, Brenes-Álvarez M, Vioque A, Muro-Pastor AM (2019) A heterocyst-specific antisense RNA contributes to metabolic reprogramming in Nostoc sp. PCC 7120. Plant Cell Physiol 60:1649–1655

    Google Scholar 

  • Pathak J, Maurya PK, Singh SP, Häder DP, Sinha RP (2018) Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Front Environ Sci 6:7

    Google Scholar 

  • Patra S, Mishra P, Mahapatra SC, Mithun SK (2016) Modelling impacts of chemical fertilizer on agricultural production: a case study on Hooghly district, West Bengal, India. Model Earth Syst Environ 2:1–11

    Google Scholar 

  • Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium – a potential tool for sustainable soil health. J Biofertil Biopest 3:124

    Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna R, Sharma E, Sharma P, Kumar A, Kumar R, Gupta V, Nain L (2013) Soil fertility and establishment potential of inoculated cyanobacteria in rice crop grown under non-flooded conditions. Paddy Water Environ 11:175–183

    Google Scholar 

  • Prasanna R, Triveni S, Bidyarani N, Babu S, Yadav K, Adak A, Saxena AK (2014) Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Arch Agron Soil Sci 60:349–366

    Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae – a review. J Algal Biomass Util 3:89–100

    Google Scholar 

  • Raja N (2013) Biopesticides and biofertilizers: ecofriendly sources for sustainable agriculture. J Biofertil Biopest 4

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019) Biodiversity of Endophytic Fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rashad S, El-Hassanin AS, Mostafa SS, El-Chaghaby GA (2019) Cyanobacteria cultivation using olive milling wastewater for bio-fertilization of celery plant. Glob J Environ Sci Manag 5:167–174

    CAS  Google Scholar 

  • Renuka N, Prasanna R, Sood A, Ahluwalia AS, Bansal R, Babu S, Nain L (2016) Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ Sci Pollut Res 23:6608–6620

    CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    CAS  PubMed  Google Scholar 

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55:207–212

    Google Scholar 

  • Sahoo RK, Bhardwaj D, Tuteja N (2013) Biofertilizers: a sustainable eco-friendly agricultural approach to crop improvement. In: Tuteja N, Singh Gill S (eds) Plant acclimation to environmental stress. Springer, New York, pp 403–432. https://doi.org/10.1007/978-1-4614-5001-6_15

    Chapter  Google Scholar 

  • Sahu D, Priyadarshani I, Rath B (2012) Cyanobacteria–as potential biofertilizer. CIB Tech J Microbiol 1:20–26

    Google Scholar 

  • Saiz E, Sgouridis F, Drijfhout FP, Ullah S (2019) Biological nitrogen fixation in peatlands: comparison between acetylene reduction assay and 15N2 assimilation methods. Soil Biol Biochem 131:157–165

    Google Scholar 

  • Sarma MK, Kaushik S, Goswami P (2016) Cyanobacteria: a metabolic power house for harvesting solar energy to produce bio-electricity and biofuels. Biomass Bioenergy 90:187–201

    CAS  Google Scholar 

  • Saurabh S, Bijendra KS, Yadav SM, Gupta AK (2014) Potential of biofertilizers in crop production in Indian Agriculture. Am J Plant Nut Fertil Technol 4:33–40

    Google Scholar 

  • Sharma R, Khokhar MK, Jat RL, Khandelwal SK (2012) Role of algae and cyanobacteria in sustainable agriculture system. Wudpecker J Agric Res 1:381–388

    Google Scholar 

  • Sheng J, Shen L, Qiao Y, Yu M, Fan B (2009) Market trends and accreditation systems for organic food in China. Trends Food Sci Technol 20:396–401

    CAS  Google Scholar 

  • Singh S, Datta P (2006) Screening and selection of most potent diazotrophic cyanobacterial isolate exhibiting natural tolerance to rice field herbicides for exploitation as biofertilizer. J Basic Microbiol 46:219–225

    PubMed  Google Scholar 

  • Singh S, Datta P (2007) Outdoor evaluation of herbicide resistant strains of Anabaena variabilis as biofertilizer for rice plants. Plant Soil 296:95–102

    CAS  Google Scholar 

  • Singh SS, Kunui K, Minj RA, Singh P (2014) Diversity and distribution pattern analysis of cyanobacteria isolated from paddy fields of Chhattisgarh, India. J Asia-Pac Biodivers 7:462–470

    Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529

    PubMed  PubMed Central  Google Scholar 

  • Singh SP, Pathak J, Sinha RP (2017) Cyanobacterial factories for the production of green energy and value-added products: an integrated approach for economic viability. Renew Sust Energ Rev 69:578–595

    Google Scholar 

  • Sinha RP, Häder D-P (2006) Impact of UV radiation on rice-field cyanobacteria: role of photoprotective compounds. In: Environmental UV radiation: impact on ecosystems and human health and predictive models. Springer, Dordrecht, pp 217–230

    Google Scholar 

  • Song T, Mårtensson L, Eriksso T, Zheng W, Rasmussen U (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiol Ecol 54:131–140

    CAS  PubMed  Google Scholar 

  • Stancheva R, Sheath RG, Read BA, McArthur KD, Schroepfer C, Kociolek JP, Fetscher AE (2013) Nitrogen-fixing cyanobacteria (free-living and diatom endosymbionts): their use in southern California stream bioassessment. Hydrobiologia 720:111–127

    CAS  Google Scholar 

  • Tantawy ST, Atef NM (2010) Growth responses of Lupinus termis to some plant growth promoting cyanobacteria and bacteria as biofertilizers. J Food Agric Environ 8:1178–1183

    Google Scholar 

  • Tripathi RD, Dwivedi S, Shukla MK, Mishra S, Srivastava S, Singh R, Gupta DK (2008) Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere 70:1919–1929

    CAS  PubMed  Google Scholar 

  • Tsujimoto R, Kamiya N, Fujita Y (2014) Transcriptional regulators ChlR and CnfR are essential for diazotrophic growth in nonheterocystous cyanobacteria. Proc Natl Acad Sci 111:6762–6767

    CAS  PubMed  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  • Wani PA, Zaidi A, Khan AA, Khan MS (2005) Effect of phorate on phosphate solubilization and indole acetic acid releasing potentials of rhizospheric microorganisms. Ann Plant Prot Sci 13:139–144

    Google Scholar 

  • Win TT, Barone GD, Secundo F, Fu P (2018) Algal biofertilizers and plant growth stimulants for sustainable agriculture. Ind Biotechnol 14:203–211

    Google Scholar 

  • Wyatt JT, Silvey JKG (1969) Nitrogen fixation by Gloeocapsa. Science 165(3896):908–909

    CAS  PubMed  Google Scholar 

  • Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:48–55

    CAS  Google Scholar 

  • Yadav N, Yadav AN (2019) Actinobacteria for sustainable agriculture. J Appl Biotechnol Bioeng 6:38–41

    Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK et al (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B et al (2017b) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8. https://doi.org/10.19080/IJESNR.2017.03.555601

    Article  Google Scholar 

  • Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017c) Plant growth promoting Bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16

    Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, New York, pp 305–332

    Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R et al (2019) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043. https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Kakatiya University, Warangal, and Krishna University, Machilipatnam, for the support extended.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veera Bramhachari Pallaval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuraganti, G., Edla, S., Pallaval, V.B. (2020). Cyanobacteria as Biofertilizers: Current Research, Commercial Aspects, and Future Challenges. In: Yadav, A., Rastegari, A., Yadav, N., Kour, D. (eds) Advances in Plant Microbiome and Sustainable Agriculture. Microorganisms for Sustainability, vol 20. Springer, Singapore. https://doi.org/10.1007/978-981-15-3204-7_11

Download citation

Publish with us

Policies and ethics

Navigation