Past, Present and Future of Microalgae Cultivation Developments

  • Chapter
  • First Online:
Biomass and Biofuels from Microalgae

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 2))

  • 3459 Accesses

Abstract

Microalgae cultivation is a promising methodology for solving some of the future problems of biomass production (i.e. renewable food, feed and bioenergy production). There is no doubt that in conjunction with conventional growth systems, novel technologies must be developed in order to produce the large-scale sustainable microalgae products. Here, we review some of the most promising existing microalgae biomass growth technologies and summarise some of the novel methodologies for sustainable microalgae production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acién Fernández FGA, Sevilla JMF, Perez JAS, Grima EM, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56(8):2721–2732

    Article  Google Scholar 

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840

    Article  Google Scholar 

  • ASTM (2008) Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface, vol G 173-03. ASTM, West Conshohocken

    Google Scholar 

  • Ayre J (2013) Microalgae culture to treat piggery anaerobic digestion effluent. Honours thesis, Murdoch University

    Google Scholar 

  • Banat F, Jwaied N (2008) Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units. Desalination 220:566–573

    Article  Google Scholar 

  • Barbosa MJ, Janssen M, Ham N, Tramper J, Wijffels RH (2003) Microalgae cultivation in air-lift reactors: modelling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng 82(2):170–179

    Article  Google Scholar 

  • Becker EW (1994) Microalgae Biotechnology and Microbiology, vol 4, 4th edn. Cambridge University Press, Northants

    Google Scholar 

  • Beer LL, Boyd ES, Peteres JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    Article  Google Scholar 

  • Benemann J (1992) Microalgae aquaculture feeds. J Appl Phycol 4:233–245

    Article  Google Scholar 

  • Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6(11):5869–5886

    Article  Google Scholar 

  • Benemann JR, Goebel RP, Weissman JC, Augenstein DC (1982) Microalgae as a source of liquid fuels. Final technical report (200 references)

    Google Scholar 

  • Bennett A (2011) Cost effective desalination: innovation continues to lower desalination costs. Filtration+Separation 48(4):24–27

    Google Scholar 

  • Borowitzka MA (1993a) Large-scale algal culture systems: the next generation. In: Sargeant J, Washer S, Jones M, Borowitzka MA (eds) 11th Australian biotechnology conference, Perth, WA, p. 61

    Google Scholar 

  • Borowitzka MA (1993b) Products from microalgae. Infofish 5(93):21-26

    Google Scholar 

  • Borowitzka MA (1996) Closed algal photobioreactors: design considerations for large-scale systems. J Mar Biotechnol 4:185–191

    Google Scholar 

  • Borowitzka MA (2012) Phycology. In: eLS. Wiley, New York

    Google Scholar 

  • Borowitzka MA (2013a) Energy from microalgae: a short history. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Berlin, pp 1–15

    Google Scholar 

  • Borowitzka MA (2013b) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1990) Commercial production of β-carotene by Dunaliella salina in open ponds. Bull Mar Sci 47(1):244–252

    Google Scholar 

  • Borowitzka MA, Moheimani NR (2010) Sustainable biofuels from algae. Mitig Adapt Strat Glob Change. doi:10.1007/s11027-010-9271-9

    Google Scholar 

  • Borowitzka M, Moheimani N (2013a) Sustainable biofuels from algae. Mitig Adapt Strat Glob Change 18:13–25

    Article  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013b) Open pond culture systems. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Berlin, pp 133–152

    Google Scholar 

  • Borowitzka M, Moheimani NR, McHenry MP (2010) Qantas sustainable aviation fuel competition review. Murdoch University, Perth

    Google Scholar 

  • Bourcier WL, Bruton CJ (2009) Silica extraction from geothermal water. United States of America Patent US 2009/00081105 A1

    Google Scholar 

  • Buchanan A et al (2013) Algae for energy and feed: a wastewater solution. A review. Pork CRC—Project 4A-101 112

    Google Scholar 

  • Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock water-to-bioenergy generation opportunities. Bioresour Technol 99:7941–7953

    Article  Google Scholar 

  • Carlozzi P, Sacchi A (2001) Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. J Biotechnol 88(3):239–249

    Article  Google Scholar 

  • Charcosset C (2009) A review of membrane processes and renewable energies for desalination. Desalination 245:214–231

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19(2):292–305

    Article  Google Scholar 

  • Craggs R, Lundquist J, Benemann JR (2013) Wastewater treatment and algal biofuel production. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, New York, pp 153–163

    Google Scholar 

  • Davies-Colley R, Craggs R, Park J, Nagels J (2005) Optical characteristics of waste stabilization ponds: recommendations for monitoring. Water Sci Technol 51(12):153–161

    Google Scholar 

  • de Boer K, Moheimani N, Borowitzka M, Bahri P (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 1–18

    Google Scholar 

  • Dodd JC (1986) Elements of pond design and construction. In: Richmond A (ed) CRC handbook of microalgal mass culture. CRC Press, Boca Raton, pp 265–284

    Google Scholar 

  • Fon Sing M (2010) Strain selection and outdoor cultivation of halophilic microalgae with potential for large-scale biodiesel production. PhD thesis, Murdoch University

    Google Scholar 

  • Fon Sing S, Isdepsky A, Borowitzka M, Moheimani N (2013) Production of biofuels from microalgae. Mitig Adapt Strat Glob Change 18(1):47–72

    Article  Google Scholar 

  • Grima EM, Acién Fernández FGA, Camacho F, Rubio F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368

    Article  Google Scholar 

  • Gross M (2007) Algal biofuel hopes. Curr Biol 18(2):R46–R47

    Article  Google Scholar 

  • Gude VG, Nirmalakhandan N, Deng S (2010) Renewable and sustainable approaches for desalination. Renew Sustain Energy Rev 14(9):2641–2654

    Article  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48(5):1057–1063

    Article  Google Scholar 

  • Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O (2007) Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. Physiol Plant 131:10–21

    Article  Google Scholar 

  • Hightower M (2009) Energy and water issues and challenges—completing the energy sustainability puzzle. Paper presented at the REUSE 09, Brisbane, Australia

    Google Scholar 

  • Janssen M, Tramper J, Mur LR, Wijffels RH (2002) Enclosed outdoor photobioreactors: light regime, photosynthesis efficiency, scale-up, and future prospects. Biotechnol Bioeng 81(2):193–204

    Article  Google Scholar 

  • Jeffery SW, Wright SW (1999) Photosynthetic pigments in the Haptophyta. In: Cohen Z (ed) Chemical from microalgae. Taylor and Francis, Philadelphia, pp 111–132

    Google Scholar 

  • Kim N, Lee C (2001) A theoretical consideration on oxygen production rate in microalgal cultures. Biotechnol Bioprocess Eng 6:352–358

    Article  Google Scholar 

  • Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  Google Scholar 

  • Lee Y-K (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Lindström K (1984) Effect of temperature light and pH on growth, photosynthesis and respiration of the dinoflagellate Peridinium cinctum fa. westii in laboratory cultures. J Phycol 20(2):212–220

    Article  Google Scholar 

  • Maraseni TN, Maroulis J (2008) Piggery: from environmental pollution to a climate change solution. J Environ Sci Health Part B 43(4):358–363

    Article  Google Scholar 

  • McHenry MP (2010) Microalgal bioenergy, biosequestration, and water use efficiency for remote resource industries in Western Australia. In: Harris AM (ed) Clean energy: resources, production and developments. Nova Science Publishers, Hauppauge, New York

    Google Scholar 

  • McHenry MP (2013) Hybrid microalgal biofuel, desalination, and solution mining systems: increased industrial waste energy, carbon, and water use efficiencies. Mitig Adapt Strat Glob Change 18:159–167

    Article  Google Scholar 

  • Miron AS, Gomez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270

    Article  Google Scholar 

  • Miron AS, Garcia MCC, Gomez AC, Camacho FG, Grima EM, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady—state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Article  Google Scholar 

  • Moheimani N (2012) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 1–12

    Google Scholar 

  • Moheimani N, Borowitzka M (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18(6):703–712

    Article  Google Scholar 

  • Moheimani NR, McHenry MP (2013) Developments of five selected microalgae companies develo** ‘closed’ bioreactor biofuel production systems. Int J Innov Sustain Dev 7(4):367–386

    Article  Google Scholar 

  • Moheimani NR, Parlevliet D (2013) Sustainable solar energy conversion to chemical and electrical energy. Renew Sustain Energy Rev 27:494–504

    Article  Google Scholar 

  • Moheimani NR, Isdepsky A, Lisec J, Raes E, Borowitzka MA (2011) Coccolithophorid algae culture in closed photobioreactors. Biotechnol Bioeng 9:2078–2087

    Article  Google Scholar 

  • Moheimani N, Cord-Ruwisch R, Raes E, Borowitzka M (2013a) Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). J Appl Phycol 25(6):1653–1661

    Article  Google Scholar 

  • Moheimani N, Matsuura H, Watanabe M, Borowitzka M (2013b) Non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22 (race B). J Appl Phycol. doi:10.1007/s10811-013-0179-0

    Google Scholar 

  • Moheimani NR, McHenry MP, de Boer K (2013c) The forefront of low-cost and high-volume open microalgae biofuel production. In: Gupta VK, Schmoll M, Maki M, Tuohy M, Mazutti MA (eds) Applications of microbial engineering. CRC Press, Boca Raton, pp 426–449

    Google Scholar 

  • Mohn FH (1988) Harvesting of micro-algal biomass. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Sydney, pp 357–394

    Google Scholar 

  • Morita M, Watanabe Y, Saiki H (2001) Evaluation of photobioreactor heat balance predicting changes in culture medium temperature due to light irradiation. Biotechnol Bioeng 74(6):465–475

    Article  Google Scholar 

  • Nicoll PG, Thompson NA, Bedford MR (2011) Manipulated osmosis applied to evaporative cooling make-up water—revolutionary technology. Paper presented at the international desalination association world congress, Perth, Western Australia, 4–9 September 2011

    Google Scholar 

  • Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15(2–3):249–257

    Article  Google Scholar 

  • Ong H, Lim Y, Suhaimi M (2006) Environmental impact and removal of phosphates in swine farm effluent. J Trop Agric Food Sci 34(2):355

    Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    Article  Google Scholar 

  • Parida B, Iniyan S, Goic R (2011) A review of solar photovoltaic technologies. Renew Sustain Energy Rev 15(3):1625–1636

    Article  Google Scholar 

  • Park J, ** H-F, Lim B-R, Park K-Y, Lee K (2010) Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour Technol 101(22):8649–8657

    Article  Google Scholar 

  • Pérez-Alonso J, Pérez-García M, Pasamontes-Romera M, Callejón-Ferre AJ (2012) Performance analysis and neural modelling of a greenhouse integrated photovoltaic system. Renew Sustain Energy Rev 16(7):4675–4685

    Article  Google Scholar 

  • Plaza M, Cifuentes A, Ibáñez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19(1):31–39

    Article  Google Scholar 

  • Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. In: Scheper T (ed) Advances in biochemical engineering biotechnology. Springer, Berlin, pp 123–152

    Google Scholar 

  • Richmond A (1992) Open systems for the mass production of photoautotrophic microalgae outdoors: physiological principles. J Appl Phycol 4:281–286

    Article  Google Scholar 

  • Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332

    Article  Google Scholar 

  • Rubio FC, Acién Fernández FGA, Sanchez Perez JA, Garcia Camacho F, Molina Grima E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactor for microalgal culture. Biotechnol Bioeng 62(1):71–86

    Article  Google Scholar 

  • Shelef G, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review. Technion Research and Development Foundation Ltd., Haifa

    Book  Google Scholar 

  • Smith VH (1983) Light and nutrient dependence of photosynthesis by algae. J Phycol 19:306–313

    Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24(7):4062–4077

    Article  Google Scholar 

  • Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J Appl Phycol 4:221–231

    Article  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31(4):233–239

    Article  Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344

    Article  Google Scholar 

  • Wijffels RH, Barbosa MJ, Eppink MH (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin 4(3):287–295

    Article  Google Scholar 

  • Wyman CE, Goodman BJ (1993a) Biotechnology for production of fuels, chemicals, and materials from biomass. Appl Biochem Biotechnol 39(1):41–59

    Article  Google Scholar 

  • Wyman CE, Goodman BJ (1993b) Biotechnology for production of fuels, chemicals, and materials from biomass. Appl Biochem Biotechnol 39(40):41–59

    Article  Google Scholar 

  • **ong W, Li X, **ang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    Article  Google Scholar 

  • Zhang K, Kurano N, Miyachi S (1999) Outdoor culture of a cyanobacterium with a vertical flat-plate photobioreactor: effects on productivity of the reactor orientation, distance setting between the plates, and culture temperature. Appl Microb Biotechnol 52:781–786

    Article  Google Scholar 

  • Zhao J, Wang A, Altermatt PP, Wenham SR, Green MA (1996) 24 % efficient perl silicon solar cell: recent improvements in high efficiency silicon cell research. Solar Energy Mater Solar Cells 41–42:87–99

    Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid R. Moheimani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moheimani, N.R., Parlevliet, D., McHenry, M.P., Bahri, P.A., de Boer, K. (2015). Past, Present and Future of Microalgae Cultivation Developments. In: Moheimani, N., McHenry, M., de Boer, K., Bahri, P. (eds) Biomass and Biofuels from Microalgae. Biofuel and Biorefinery Technologies, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-16640-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16640-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16639-1

  • Online ISBN: 978-3-319-16640-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation