Cellulolytic Themrophilic Fungi

  • Chapter
Thermophilic Moulds in Biotechnology

Abstract

Fungal enzymatic equipment for breaking down cellulose is quite variable, from simple systems, made up essentially of cellulases capable of hydrolysing only amorphous cellulose, to more complex multicomponent systems whose elements act synergistically on native crystalline cellulose to bring about its complete solubilization. Consequently, fungi provided with such complex systems are capable of growing on pure cellulose as carbon source and are, therefore, considered truly cellulolytic (125). Among thermophilic fungi, some have been shown to thrive on pure crystalline cellulose and to secrete a set of enzymes, which are also active “in vitro”. Such fungi are the subjects of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anand, L. and Vithayathil, P.J. (1989) Purification and properties of β-glucosidase from thermophilic fungus Humicola lanuginosa (Griffon and Maublanc) Bunce, J Ferment. Bioeng. 67, 380–386.

    Article  CAS  Google Scholar 

  2. Anand, L., Krishnamurthy, S., and Vithayathil, P.J. (1990) Purification and properties of xylanases from the thermophilic fungus Humicola lanuginosa (Griffon and Maublanc) Bunce, Arch. Biochem. Biophys. 276, 546–553.

    Article  PubMed  CAS  Google Scholar 

  3. Apinis, A.E. (1967) Dactylomyces and Thermoascus, Trans. Br. Mycol. Soc. 50, 573–582.

    Article  Google Scholar 

  4. Apinis, A.E. (1963) Occurrence of thermophilous microfungi in certain alluvial soil near Nottingham, Nova Hedwigia, Zeitschr. Kryptogamenk. 5, 57–58.

    Google Scholar 

  5. Araujo, E.F., Barros, E.G., Caldas, R.A., and Silva, D.O. (1983) β-Glucosidase activity of a thermophilic cellulolytic fungus, Humicola sp. Biotechnol. Lett. 5, 781–784.

    Article  CAS  Google Scholar 

  6. Barnes, T.G. (1974) Ecological aspects of the degradation of town waste, Thesis, University of Aston, Birmingham.

    Google Scholar 

  7. Bedino, S., Testore, G., and Obert, F. (1985) Comparative studies of glucosidases from the thermophilic fungus Thermoascus aurantiacus: purification and characterization of intracellular β-glucosidase, Ital. J. Biochem. (Engle.ed.) 34, 341–355.

    PubMed  CAS  Google Scholar 

  8. Bhat, K.M. and Maheshwari, R. (1987) Sporotrichum thermophile growth, cellulose degradation, and cellulase activity, Appl. Env. Microbiol. 53, 2175–2182.

    CAS  Google Scholar 

  9. Bhat, K.M., Gaikward, J.S., and Maheswari, R. (1993) Purification and characterization of an extracellular β-glucosidase from the thermophilic fungus Sporotrichum thermophile and its influence on cellulose activity, J Gen. Microbiol. 139, 2825–2832.

    CAS  Google Scholar 

  10. Bisaria, V.S. and Ghosh, T.K. (1981) Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products, Enz. Microb. Technol. 3, 91–104.

    Article  Google Scholar 

  11. Bisaria, V.S. and Mishra, S. (1988) Regulatory aspects of cellulase synthesis and secretion, CRC Crit. Rev. Biotechnol. 9, 61–103.

    Article  Google Scholar 

  12. Breuil, C., Wojtczak, G., and Saddler, J.N. (1986) Production and localisation of cellulases and β-glucosidase from the thermophilic fungus Thielavia terrestris, Biotechnol. Lett. 9, 673–676.

    Article  Google Scholar 

  13. Canevascini, G. and Meyer, H.P. (1979) β-Glucosidase in the cellulolytic fungus Sporotrichum thermophile, Apinis, Exp. Mycol. 3, 203–214.

    Article  CAS  Google Scholar 

  14. Canevascini, G., Coudray, M.R., Rey, J.P., Southgate, R.J.G., and Meier, H. (1979) Induction and catabolite repression of cellulase synthesis in the thermophilic fungus Sporotrichum thermophile, J. Gen. Microbiol. 110, 291–303.

    CAS  Google Scholar 

  15. Canevascini, G., Fachin, M., and Trachsel, S. (1981) Kinetics of induced and catabolite repressed endocellulase synthesis in Sporotrichum (Chrysosporium) thermophile Apinis,Exp. Mycol. 5, 258–268.

    Article  CAS  Google Scholar 

  16. Canevascini, G., Fracheboud, D., and Meier, H. (1983) Fractionation and identification of cellulase and other extracellular enzymes produced by Sporotrichum (Chrysosporium) thermophile during growth on cellulose or cellobiose, Can. J. Microbiol. 29, 1071–1080.

    Article  CAS  Google Scholar 

  17. Canevascini, G., Borer, P., and Dreyer, J.L. (1991) Cellobiose dehydrogenases of Sporotrichum (Chrysosporium) thermophile, Eur. J. Biochem. (In Press).

    Google Scholar 

  18. Carrel, F.L.Y. and Canevascini, G. (1991) Effect of β- glucosidases inhibitors on synthesis of cellulase and β-glucosidases in Sporotrichum (Chrysosporium) thermophile, Can. J. Microbiol. (In Press).

    Google Scholar 

  19. Chahal, D.S. and Hawksworth, D.L. (1976) Chaetomium cellulolyticum a new thermotolerant and cellulolytic Chaetomium. I. Isolation description and growth rate, Mycologia 68, 600–610.

    Article  Google Scholar 

  20. Chernoglazov, V.M., Ermolova, O.V., Dzhafarova, A.N., Klesov, A.A., Guzhova, E.P., and Loginova, L.G. (1988) Isolation, purification and substrate specificity of high thermostable endo-1,4-β-glucanase from Myceliophthora thermophila, Biokhimiya 53, 475–482.

    CAS  Google Scholar 

  21. Cooney, D.G. and Emerson, R. (1964) Thermophilic fungi, Freeman and Co. San Francisco.

    Google Scholar 

  22. Coudray, M.R., Canevascini, G., and Meier, H. (1982) Characterization of a cellulose dehydrogenase in the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile, Biochem. J. 203, 277–284.

    PubMed  CAS  Google Scholar 

  23. Coughlan, M.P. and Ljungdahl, L.G. (1988) Comparative biochemistry of fungal and bacterial cellulolytic enzyme systems, in J.P. Aubert, P. Beguin and J. Millet (eds.), Biochemistry and Genetics of Cellulose Degradation, Academic Press, London, San Diego and New York, pp. 11–30.

    Google Scholar 

  24. Coughlan, M.P. and McHale, A. (1988) Purification of the β- D-glucoside glucohydrolases of Talaromyces emersonii, Methods Enzymol. 160, 437–443.

    Article  CAS  Google Scholar 

  25. Coughlan, M.P. and Moloney, A.P. (1988) Isolation of 1,4-β-D-glucan 4-glucanohydrolases of Talaromyces emersonii, Methods Enzymol. 160, 363–368.

    Article  CAS  Google Scholar 

  26. Coutts, A.D. and Smith, R.E. (1976) Factors influencing the production of cellulases by Sporotrichum thermophile, Appl. Env. Microbiol. 31, 819–825.

    CAS  Google Scholar 

  27. Crisan, E.V. (1973) Current concepts of thermophilism and the thermophilic fungi, Mycologia 65, 1171–1198.

    Article  PubMed  CAS  Google Scholar 

  28. Dekker, R.F.H. (1988) Cellobiose dehydrogenases produced by Monilia sp. Methods Enzymol. 160, 454–463.

    Article  CAS  Google Scholar 

  29. Deshpande, M.V., Eriksson, K.E., and Pettersson, L.G. (1984) An assay for selective determination of exo-1,4-β-glucanase in a mixture of cellulolytic enzymes, Anal. Biochem. 138, 481–487.

    Article  PubMed  CAS  Google Scholar 

  30. Dubeau, H., Chahal, D.S., and Ishaque, M. (1986) Production of xylanases by Chaetomium cellulolyticum during growth on lignocelluloses, Biotechnol. Lett. 8, 445–448.

    Article  CAS  Google Scholar 

  31. Dubean, H., Chahal, D.S., and Ishaque, M. (1987) Xylanases of Chaetomium cellulolyticum: its nature of production and cellulolytic potentials, Biotechnol. Lett. 9, 275–280.

    Article  Google Scholar 

  32. Durand, H., Soucaille, P.H., and Tiraby, G. (1984) Comparative studies of cellulase and hemicellulases from fungi: mesophiles Trichoderma reesei and Penicillium sp. and thermophiles Thielavia terrestris and Sporotrichum cellulophilum, Enz. Microb. Technol. 6, 175–180.

    Article  CAS  Google Scholar 

  33. Ellis, D.H. (1981) Ascocarp morphology and terminal hair ornamentation in thermophilic Chaetomium species, Mycologia 73, 755–773.

    Article  Google Scholar 

  34. Ellis, D.H. (1981) Ultrastructure of thermophilic fungi. 1 Ascocarp morphology of Thermoascus aurantiacus, Trans. Br. Mycol. Soc. 76, 457–466.

    Article  Google Scholar 

  35. Ellis, D.H. (1981) Ultrastructure of thermophilic fungi III. Ascocarp morphology of Chaetomium thermophile and Chaetomium gracile, Trans. Br. Mycol. Soc. 77, 165–177.

    Article  Google Scholar 

  36. Ellis, D.H. (1981) Ultrastructure of thermophilic fungi. IV Conidial ontogeny in Thermomyces, Trans. Br. Mycol. Soc. 77, 229–241.

    Article  Google Scholar 

  37. Ellis, D.H. (1982) Ultrastructure of thermophilic fungi: 5. conidial ontogeny in Humicola grisea var. thermoidea and Humicola insolens, Trans. Br. Mycol. Soc. 78, 129–140.

    Article  Google Scholar 

  38. Ellis, D.H. and Griffiths, D.A. (1976) The fine structure of conidial development in the genus Torula. IV Torula thermophila Cooney and Emerson, Can. J. Microbiol. 22, 1102–1112.

    Article  PubMed  CAS  Google Scholar 

  39. Enari, T.M. and Niku-Paavola, M.L. (1987) Enzymatic hydrolysis of cellulose: is the current theory of the mechanisms of hydrolysis valid? CRC Crit. Rev. Biotechnol. 5, 67–87.

    Article  CAS  Google Scholar 

  40. Eriksen, J. and Gokosyr, J. (1976) The effect of temperature on growth and cellulase (β-1,4-endoglucanase) production on the compost fungus Chaetomium thermophile var. dissitum, Arch. Microbiol. 110, 233–238.

    Article  CAS  Google Scholar 

  41. Erikssorn, K.E. L., Blanchette, R.A., and Ander, P. (1990) Microbial and Enzymatic Degradation of Wood and Wood components, Springer Verlag, Berlin, Heidelberg, New York.

    Book  Google Scholar 

  42. Fanrich, P. and Irrgang, K. (1981) Cellulase and protein production by Chaetomium cellulolyticum strains grown on cellulosic substrates, Biotechnol. Lett. 3, 201–206.

    Article  Google Scholar 

  43. Fanrich, P. and Irrgang, K. (1982) Some characteristics of the cellulolytic enzyme system of Chaetomium cellulolyticum, Biotechnol. Lett. 4, 519–524.

    Article  Google Scholar 

  44. Fanrich, P. and Irrgang, K. (1982) Conversion of cellulose to sugars and cellobionic acid by the extracellular enzyme system of Chaetomium cellulolyticum, Biotechnol. Lett. 4, 775–780.

    Article  Google Scholar 

  45. Fanrich, P. and Irrgang, K. (1987) Affinity chromatography of extracellular cellulase from Chaetomium cellulolyticum, Biotechnol. Lett 6, 251–256.

    Article  Google Scholar 

  46. Feldman, K.A., Lovett, J.S., and Tsao, G.T. (1988) Isolation of the cellulase enzyme from the thermophilic fungus Thermoascus aurantiacus and regulation of enzyme production, Enzyme Microb. Technol. 10, 262–272.

    Article  CAS  Google Scholar 

  47. Fergus, C.L. (1969) The cellulolytic activity of thermophilic fungi and Actinomycetes. Mycologia 61, 120–129.

    Article  CAS  Google Scholar 

  48. Fergus, C.L. and Sinden, J.W. (1969) A new thermophilic fungus from mushroom compost: Thielavia thermophila sp. nov. Can. J. Botany 47, 1635–1637.

    Article  Google Scholar 

  49. Folan, M.A. and Coughan, M.P. (1978) The cellulase complex in the culture filtrate of the thermophilic fungus Talaromyces emersonii, Int. J. Biochem. 9, 717–722.

    Article  PubMed  CAS  Google Scholar 

  50. Folan, M.A. and Coughan, M.P. (1979) The saccharifying ability of the cellulase complex of Talaromyces emersonii and composition with that of fungal species, Int. J. Biochem. 10, 505–510.

    Article  PubMed  CAS  Google Scholar 

  51. Folan, M.A. and Coughan, M.P. (1981) Cellulase activity of colour “variants” of Talaromyces emersonii, Int. J. Biochem. 13, 243–245.

    Article  CAS  Google Scholar 

  52. Fracheboud, D. and Canevascini, G. (1989) Isolation, purification and properties of the exocellulase from Sporotrichum (Chrysosporium) thermophile, Enzyme Microb. Technol. 11, 220–229.

    Article  Google Scholar 

  53. Ganju, R.K., Vithayathil, P.J., and Murthy, S.K. (1980) Purification and characterization of two xylanase from Chaetomium thermophile var. coprophile, Can. J. Microbiol. 35, 836–842.

    Article  Google Scholar 

  54. Ganju, R.K., Murthy, S.K., and Vithayathil, P.J. (1989) Purification and characterization of two cellobiohydrolases from Chaetomium thermophile var. coprophile, Biochim. Biophys. Acta 993, 266–274.

    Article  PubMed  CAS  Google Scholar 

  55. Ganju, R.K., Vithayathil, P.J., and Murthy, S.K. (1990) Factors influencing production of cellulase by Chaetomium thermophile var. coprophile, Indian J. Exp. Biol. 28, 259–264.

    CAS  Google Scholar 

  56. Ganju, R.K., Murthy, S.K., and Vithayathil, P.J. (1990) Purification and functional characteristics of an endocellulase from Chaetomium thermophile var. coprophile, Carbohydr. Res. 197, 245–255.

    Article  CAS  Google Scholar 

  57. Ganns, C.V.M., Silva, D.O., Brune, W., and Moreira, M.A. (1989) Cellulolytic activities in Humicola sp. Rev. Microbiol. 20, 460–465.

    Google Scholar 

  58. Ganns, C.V.M., Silva, D.O., Brune W., and Moreira, M.A. (1989) Characterization of a thermophilic and cellulolytic Humicola sp. isolated from compost, Rev. Microbiol. 20, 470–476.

    Google Scholar 

  59. Gilbert, M., Breuil, C., and Saddler, J.N. (1992) Characterization of the enzymes present in the cellulose system of Thielavia terrestris 255B, Bioresource Technol. 38, 147–154.

    Article  Google Scholar 

  60. Grajek, W. (1986) Temperature and pH-optima of enzyme activities produced by cellulolytic thermophilic fungi in batch and solid-state culture, Biotechnol. Lett. 8, 587–590.

    Article  CAS  Google Scholar 

  61. Grajek, W. (1987) Comparative studies on the production of cellulase by thermophilic fungi in submerged and solid state fermentation, Appl. Microbiol. Biotechnol. 26, 126–129.

    Article  CAS  Google Scholar 

  62. Grajek, W. (1987) Production of D-xylanase by thermophilic fungi using different methods of culture, Biotechnol. Lett. 9, 353–356.

    Article  CAS  Google Scholar 

  63. Grajek, W. (1987) Hyperproduction of thermostable β- glucosidase by Sporotrichum (Chrysosporium) thermophile, Enz. Microb. Technol. 9, 744–748.

    Article  CAS  Google Scholar 

  64. Griffin, H., Dintzis, F.R., Krull, L., and Baker, F.L. (1984) A microfibril generating factor from the enzyme from Trichoderma reesei, Biotechnol. Bioeng. 26, 296–300.

    Article  PubMed  CAS  Google Scholar 

  65. Gupta, S.D. and Maheshwari R. (1985) Is organic acid required for nutrition of thermophilic fungi? Arch. Microbiol. 141, 164–169.

    Article  CAS  Google Scholar 

  66. Halliwell, G. (1975) Mode of action of components of cellulase complex in relation to cellulolysis, in M. Baily, T.M. Enari and M. Linko (eds.), Symposium on Enzymatic Hydrolysis of Cellulose, SITRA Aulanko, Finland, pp. 319–336

    Google Scholar 

  67. Hayashida, S. and Yoshioka, H. (1980) The role of carbohydrate moiety on thermostability of cellulases from Humicola insolens YH-8, Agr. Biol. Chem. 44, 481–487.

    Article  CAS  Google Scholar 

  68. Hayashida, S. and Yoshioka, H. (1980) Production and purification of thermostable cellulases from Humicola insolens HY-8, Agr. Biol. Chem. 44, 1721–1728.

    Article  CAS  Google Scholar 

  69. Hayashida, S. and Mo, K. (1986) Production and characteristics of Avicel disintegrating endoglucanase from a protease-negative Humicola grisea var. thermoidea strain, Appl. Env. Microbiol. 51, 1041–1046

    CAS  Google Scholar 

  70. Hayashida, S., Ohta, K., and Mo, K. (1988) Cellulase of Humicola insolens and Humicola grisea, Methods Enzymol. 160, 323–338.

    Article  CAS  Google Scholar 

  71. Hedger, J.N. and Hudson, H.J. (1970) Thielavia thermophila and Sporotrichum thermophile, Trans. Br. Mycol. Soc. 54, 497–500.

    Article  Google Scholar 

  72. Heptinstall, J., Stewart, J.C., and Seras, M. (1986) Fluorimetric estimation of exo-cellobiohydrolase and β-D-glucosidase from Aspergillus fumigatus Fresenius, Enzyme Microb. Technol. 8, 70–74.

    Article  CAS  Google Scholar 

  73. Jaitley, A.K., Johri, B.N., and Goel, R. (1993) Increased β- glucosidase activity of mutants of Sporotrichum thermophile Apinis through protoplast fusion, Ind. J. Microbiol. 33, 175–178.

    Google Scholar 

  74. Kawamori, M.M., Takayama, K., and Takasawa, S. (1987) Production of cellulases by a thermophilic fungus Thermoascus aurantiacus A-131, Agr. Biol. Chem. 51, 647–654.

    Article  CAS  Google Scholar 

  75. Kelsov, A.A., Ermolova, O.V., Chernoglazov, V.M., Loginova, L.G., and Guzhova, E.P. (1987) Thermostable 1,4-β-endoglucanase from Myceliophthora thermophila purification and characteristics, Prikl. Biokhim. Mickrobiol. 23, 44–50.

    Google Scholar 

  76. Khandke, K.M., Vithayathil, P.J., and Murthy, S.K. (1989) Purification of xylanases, β-glucosidase, endocellulase and exocellulase from a thermophilic fungus Thermoascus aurantiacus, Arch. Biochem. Biophys. 274, 491–500.

    Article  PubMed  CAS  Google Scholar 

  77. Khandke, K.M., Vithayathil, P.J., and Murthy, S.K. (1989) Degradation of larch wood xylan by enzymes of a thermophilic fungus Thermoascus aurantiacus, Arch. Biochem. Biophys. 274, 501–510.

    Article  PubMed  CAS  Google Scholar 

  78. Khandke, K.M., Vithayathil, P.J., and Murthy, S.K. (1989) Purification and characterization of an x-D-glucuronidase from the thermophilic fungus Thermoascus aurantiacus, Arch. Biochem. Biophys. 274, 511–517.

    Article  PubMed  CAS  Google Scholar 

  79. Kinoshita, S., Chua, I.W., Kato, N., Yoshida, T., and Taguchi, H. (1986) Hydrolysis of cellulose by cellulases of Sporotrichum cellulophilum in a ultrafilter membrane reactor, Enz. Microb. Technol. 8, 691–695.

    Article  CAS  Google Scholar 

  80. Kitpreechavanich, V., Hayashi, M., and Nagai, S. (1984) Production of xylan-degrading enzymes by thermophilic fungi Aspergillus fumigatus and Humicola lanuginosa, J. Ferment. Technol. 62, 415–420.

    CAS  Google Scholar 

  81. Klyosov, A.A. (1988) Cellulases of the third generation, in J. P. Aubert, P. Beguin and J. Millet (eds.), Biochemistry and Genetics of Cellulose Degradation, Academic Press, London San Diego and New York, pp 87–99.

    Google Scholar 

  82. Klysov, A.A., Ermolova, O.V., and Chernoglazov, V.M. (1988) A thermostable endo-1,4-β-glucanase from Myceliophthora thermophila, Biotechnol. Lett. 10, 351–3564.

    Article  Google Scholar 

  83. Komura, I., Awao, T., and Yamada, K. (1978) US Pat.4 106 989.

    Google Scholar 

  84. Krull, L.H., Dintzis, F.R., Griffin, H.L., and Baker, F.L. (1988) A microfibril generating factor from a cellulase from Trichoderma reesei, Biotechnol. Bioeng. 31, 321–327.

    Article  PubMed  CAS  Google Scholar 

  85. Kvachadze, L.L., Kvatadze, N.N., and Kvestiadze, G.J. (1988) A thermophilic Allescheria terrestris strain producing exogenous cellulase, Mikrobiologiya 58, 462–466.

    Google Scholar 

  86. Leisola, M.S.A., Ulmer, D.C., Pirkanen, K., and Fiechter, A. (1985) Induction of cellulase in Chaetomium cellulolyticum by cellobiose (Technical note), Biotechnol. Bioeng. 27, 1389–1391.

    Article  PubMed  CAS  Google Scholar 

  87. Lindstrom, H. (1972) Microscopic studies of cavity formation by soft-rot fungi Allescheria Microscopic studies of cavity formation by soft-rot fungi Allescheria terrestris Apinis, Margarinomyces luteo-viridis Beyma and Phialophora richardsiae (Nanuf.), Conant. Studia Forestalia Suecica 98, 1–18.

    Google Scholar 

  88. Loginova, L.G., Bekyakova, L.A., Guzhova, E.P., Yusupopva, I.Kh., Burdenko, L.G., and Seregina, L.M. (1983) Thermophilic cellulose-decomposing Myceliophthora thermophila, Mikrobiologiya 52, 605–608.

    CAS  Google Scholar 

  89. Lusis, A.D. and Becker, R.R. (1973) The β-glucosidase system of the thermophilic fungus Chaetomium thermophile var. coprophile N. var. Biochim. Biophys. Acta 329, 5–16.

    Article  PubMed  CAS  Google Scholar 

  90. Maheshwari, R., Kamalan, P.T., and Balasubramanyan, P.V. (1987) The biogeography of thermophilic fungi, Curr. Sci. 56, 151–155.

    Google Scholar 

  91. Malloch, D. and Cain, R.F. (1973) The genus Thielavia, Mycologia 65, 1055–1077.

    Article  Google Scholar 

  92. Mandels, M., Andreotti, R., and Roche, Ch. (1976) Measurement of saccharifying cellulase, Biotechnol. Bioeng. Symp. 6, 21–33.

    PubMed  CAS  Google Scholar 

  93. Margaritis, A. and Merchant, R.F. (1983) Production and thermal characteristics of cellulase and xylanase enzymes from Thielavia terrestris, Biotechnol. Bioeng. Symp. 13, 299–314

    CAS  Google Scholar 

  94. Margaritis, A. and Merchant, R.F.J. (1986) Thermostable cellulases from thermophilic microorganisms, CRC Crit. Rev. Biotechnol. 4, 327–367.

    Article  CAS  Google Scholar 

  95. Margaritis, A. and Merchant, R.F. (1986) Optimization of fermentation conditions for thermostable cellulase production by Thielavia terrestris, J. Ind. Microbiol. 1, 149–156.

    Article  CAS  Google Scholar 

  96. Margaritis, A. and Creese, E. (1981) Thermal stability characteristics of cellulase enzymes produced by Sporotrichum thermophile, Biotechnol. Lett. 3, 471–476.

    Article  CAS  Google Scholar 

  97. Margaritis, A., Merchant, R., and Yaguchi, M. (1983) Xylanase, CM-cellulase and avicelase production by the thermophilic fungus Sporotrichum thermophile, Biotechnol. Lett. 5, 265–270.

    Article  CAS  Google Scholar 

  98. McHale, A.P. (1988) Cellulase production by immobilized Talaromyces emersonii in calcium alginate, Biotechnol. Lett. 10, 361.

    Article  CAS  Google Scholar 

  99. McHale, A. and Coughlan, M.P. (1980) Synergistic hydrolysis of cellulose by components of the extracellular cellulase system of Talaromyces emersonii, FEBS Lett. 117, 319–322.

    Article  PubMed  CAS  Google Scholar 

  100. McHale, A. and Coughlan, M.P. (1981) Identification of various components produced during growth on cellulosic media by Talaromyces emersonii, Biochim. Biophys. Acta 662, 145–151.

    Article  CAS  Google Scholar 

  101. McHale, A. and Coughlan, M.P. (1981) A convenient zymogram stain for cellulases. Biochem. J. 199, 267–268.

    PubMed  CAS  Google Scholar 

  102. McHale, A. and Coughlan, M.P. (1981) The cellulolytic system of Talaromyces emersonii. Purification and characterization of the extracellular and intracellular β-glucosidases. Biochim. Biophys. Acta 662, 152–159.

    Article  CAS  Google Scholar 

  103. McHale, A. and Coughlan, M.P. (1982) Properties of the β- glucosidase of Talaromyces emersonii, J. Gen. Microbiol. 128, 2327–2331.

    CAS  Google Scholar 

  104. Merchant, R., Merchant, F., and Margaritis, A. (1988) Production of xylanase by the thermophilic fungus Thielavia terrestris, Biotechnol. Lett. 10, 513–516.

    Article  CAS  Google Scholar 

  105. Meyer, H.P. and Canevascini, G. (1981) Separation and some properties of two intracellular β-glucosidases of Sporotrichum (Chrysosporium) thermophile, Appl. Env. Microbiol. 41, 924–931.

    CAS  Google Scholar 

  106. Miehe, H. (1907) Die selbsterhitzung des Heus. Eine biologische Studie, Fischer Verlag, Jena.

    Google Scholar 

  107. Millner, P.O. (1977) Radial growth responses to temperature by fifty eight Chaetomium species, and some taxonomic relationships, Mycologia 69, 492–502.

    Article  Google Scholar 

  108. Mishra, M.M., Kapoor, K.K., Jain, M.K., and Singh, C.P. (1981) Cellulose degradation by Humicola lanuginosa, Trans. Br. Mycol. Soc. 76, 159–160.

    Article  CAS  Google Scholar 

  109. Moloney, A and Coughlan, M.P. (1983) Sorption of Talaromyces emersonii cellulase on cellulosic substrates, Biotechnol. Bioeng. 25, 271–280.

    Article  PubMed  CAS  Google Scholar 

  110. Moloney, A.P., Considine, P.J., and Coughlan, M.P. (1982) Cellulose hydrolysis by the cellulase produced by Talaromyces emersonii when grown on different inducing substrates, Biotechnol. Bioeng. 25, 1169–1173.

    Article  Google Scholar 

  111. Moloney, A.P., McCrae, S.I., Wood, T.M., and Coughlan, M.P. (1983) Isolation and characterization of the 1,4-β-D-glucan glucanohydrolase of Talaromyces emersonii, Biochem. J. 225, 365–374.

    Google Scholar 

  112. Moloney, A.P., Hackett, T.J., Considine, P.J., and Coughlan, M.P. (1983) Isolation of mutants of Talaromyces emersonii CBS 814.70 with enhanced cellulase activity, Enz. Microb. Technol. 5, 260–264.

    Article  CAS  Google Scholar 

  113. Moo-Young, M., Chahal, D.S., and Vlach, D. (1978) Single cell protein from various chemically pretreated wood substrates using Chaetomium cellulolyticum. Biotechnol. Bioeng. 20, 107–118.

    Article  CAS  Google Scholar 

  114. Morrison, J., McCarty, U., and Mchale, A.P. (1987) Cellulase production by Talaromyces emersonii CBS 814.70 and a mutant UV 7 during growth on cellulose, lactose and glucose containing media, Enz. Microb. Technol. 9, 422–425.

    Article  CAS  Google Scholar 

  115. Nilsson, T. (1973) Studies on wood degradation and cellulolytic activity of microfungi, Studies Forestalia Suecica 104, 1–40.

    Google Scholar 

  116. Nummi, M., Niku-Paavola, M.L., Lappalanien, A., Enari, T.M., and Raunio, V. (1983) Cellobiohydrolase from Trichoderma reesei, Biochem. J. 215, 677–683.

    PubMed  CAS  Google Scholar 

  117. Olutiola, P.O. (1982) Characterization of cellulase from Humicola lanuginosa, Experientia 38, 1332–1333.

    Article  CAS  Google Scholar 

  118. Oso, B.A. (1978) The production of cellulases by Talaromyces emersonii, Mycologia 70, 577–585.

    Article  CAS  Google Scholar 

  119. Pamment, N., Robinson, C.W., and Mo-Young, M. (1979) Pulp and paper mill solid wastes as substrates for single-cell protein production, Biotechnol. Bioeng. 21, 561–573.

    Article  CAS  Google Scholar 

  120. Parry, J.B., Stewart, J.C., and Heptinstall, J. (1983) Purification of the major endoglucanase from Aspergillus fumigatus Fresenius, Biochem. J. 213, 437–444

    PubMed  CAS  Google Scholar 

  121. Peralta, R.M., Terenzi, H.F., and Jorge, J.A. (1990) β-D-glycosidase activities of Humicola grisea: biochemical and kinetic characterization of a multifunctional enzyme, Biochim. Biophys. Acta 1033, 243–249.

    Article  PubMed  CAS  Google Scholar 

  122. Peralta, R.M., Kadowaki, M.K., Terenzi, H.F., and Jorge, J.A. (1997) A highly thermostable β-glucosidase activity from the thermophilic fungus Humicola grisea var. thermoidea, Purification and biochemical characterization. FEMS Microbiol. Lett. 146, 291–296.

    Article  CAS  Google Scholar 

  123. Pugh, G.J.F., Blakeman, J.P., and Morgan-Jones, G. (1964) Thermomyces verrucosus sp. nov. and Thermomyces lanuginosus, Trans. Br. Mycol. Soc. 47, 115–124.

    Article  Google Scholar 

  124. Reese, E.T. (1978) Degradation of polymeric carbohydrates by microbial enzymes, Recent Advances in Phytochemistry 11, 311–367.

    Google Scholar 

  125. Reeese, E.T., Siu, R.G.H., and Levinson, H.S. (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis, J Bacteriol. 59, 485–497.

    Google Scholar 

  126. Romanelli, R.A., Huston, C.W., and Barnett, S.M. (1975) Studies on thermophilic fungi, Appl. Microbiol. 30, 276–281.

    PubMed  CAS  Google Scholar 

  127. Rosenberg, S.L. (1978) Cellulose and lignocellulose degradation by thermophilic and thermotolerant fungi, Mycologia 70, 1–13.

    Article  CAS  Google Scholar 

  128. Roy, S.K., Raha, S.K., Dey, S.K., and Chakrabarty, S.L. (1988) Induction and catabolite repression of β-glucosidase synthesis in Myceliophthora thermophila D- 14 (= ATCC 48 104), Appl. Env. Microbiol. 54, 2152–2153.

    CAS  Google Scholar 

  129. Roy, S.K., Dey, S.K., Raha, S.K., and Chakrabarty, S.L. (1990) Purification and properties of an extracellular endoglucanase from Myceliophthora thermophila D-14 (ATCC 48 104), J. Gen. Microbiol. 136, 1967–1971.

    PubMed  CAS  Google Scholar 

  130. Roy, S.K., Raha, S.K., Dey, S.K., and Chakrabarty, S.L. (1990) Effect of temperature on the production and location of cellulase components in Myceliophthora thermophila D-14 (= ATCC 48 104), Enz. Microb. Technol. 12, 710–713.

    Article  CAS  Google Scholar 

  131. Rudick, M.J. and Elbein, A.D. (1975) Glycoprotein enzymes secreted by Aspergillus fumigatus: purification and properties of a second β-glucosidase, J. Bacteriol. 124, 534–541.

    PubMed  CAS  Google Scholar 

  132. Sanson, R.A., Crisman, M.J., and Tansey, M.R. (1977) Observation on the thermophilous ascomycete Thielavia terrestris, Trans. Br. Mycol. Soc. 69, 417–423.

    Article  Google Scholar 

  133. Satyanarayana, T., Jain, S., and Johri, B.N. (1986) Cellulase and xylanases of thermophilic moulds, in V.P. Agnihotri, A.K. Sorbhoy and Dinesh Kumar (eds.), Perspective in Mycology and Plant Pathology, Malhotra Publishing House, New Delhi, pp. 24–60.

    Google Scholar 

  134. Sedha, R.K. and Ghai, S.K. (1987) Partial fractionation of cellulase complex of Chaetomium cellulolyticum (ATCC 32 319) using Ultrogel AcA 44, J. Res. Punjab Agric. Univ. 24, 641–645.

    CAS  Google Scholar 

  135. Semenuik, G. and Carmichael, J.W. (1966) Sporotrichum thermophile in North America, Can. J. Botany 44, 105–108.

    Article  Google Scholar 

  136. Sen, S., Abraham, T.K., and Chakrabarty, S.L. (1981) Cellulolytic activities of Myceliophthora thermophila D-14, Curr. Sci. 50, 598–600.

    CAS  Google Scholar 

  137. Sen, S., Abraham, T.K., and Chakrabarty, S.L. (1982) Characteristics of the cellulase produced by Myceliophthora thermophila D-14, Can. J. Microbiol. 28, 271–277.

    Article  CAS  Google Scholar 

  138. Sen, S., Abraham, T.K., and Chakrabarty, S.L. (1983) Induction of cellulase in Myceliophthora thermophila D-14, Can. J. Microbiol. 29, 1258–1260.

    Article  CAS  Google Scholar 

  139. Shepherd, M.G., Tong, C.C., and Cole, A.L. (1981) Substrate specificity and mode of action of the cellulase from the thermophilic fungus Thermoascus aurantiacus, Biochem. J. 193, 67–74.

    PubMed  CAS  Google Scholar 

  140. Shepherd, M.G., Cole, A.L., and Tong, C.C., (1988) Cellulases from Thermoascus aurantiacus, Methods Enzymol. 160, 300–307.

    Article  CAS  Google Scholar 

  141. Skinner, W.A. and Tokuyma, F. (1978) US Pat. 4 081 328.

    Google Scholar 

  142. Stewart, J.C. and Parry, J.B. (1981) Factors influencing the production of cellulase by Aspergillus fumigatus, J. Gen. Microbiol. 125, 33–39.

    PubMed  CAS  Google Scholar 

  143. Stewart, J.C. and Heptinstall, J. (1988) Cellulase and hemicellulase from Aspergillus fumigatus Fresenius, Methods Enzymol. 160, 264–274.

    Article  CAS  Google Scholar 

  144. Stewart, J.C., Lester, A., Milburn, B., and Parry, J.B. (1983) Xylanase and cellulase production by Aspergillus fumigatus Fresenius, Biotechnol. Lett. 5, 35–37.

    Google Scholar 

  145. Stolk, A.C. (1963) Thermophilic species of Talaromyces Benjamin and Thermoascus Miehei, Antoine van Leeuvenhoek 31, 2037–2058.

    Google Scholar 

  146. Subrahmnyeswara, R.U. and Murthy, S.K. (1988) Purification and characterization of a β-glucosidase and endocellulase from Humicola insolens, Ind. J. Biochem. Biophys. 25, 687–694.

    Google Scholar 

  147. Sudgen, ’C. and Bhat, M.K. (1994) Cereal straw and pure cellulose as carbon sources for growth and production of plant cell wall degrading enzymes by Sporotrichum thermophile, World J. Microbiol. Biotechnol. 10, 444–451.

    Article  Google Scholar 

  148. Svistova, J.D., Bravova, G.B., Zherebstov, N.A., Guzhova, E.P., and Loginova, L.G. (1986) Regulation of cellulase biosynthesis in Myceliophthora thermophila, Mikrobiologiya 55, 49–54.

    CAS  Google Scholar 

  149. Tadashi, I. and Yamada, Y. (1986) Purification and properties of a polyphenol oxidase from Chaetomium thermophile, a thermophilic fungus, J. Gen. Appl. Microbiol. 32, 293–302.

    Article  Google Scholar 

  150. Tadashi, I., Hirose, Y., and Yamada, Y. (1988) Characterization of polyphenol oxidase from Chaetomium thermophile, a thermophilic fungus, J. Gen. Appl. Microbiol. 34, 401–408.

    Article  Google Scholar 

  151. Tamada, M., Kesai, N., Kumakura, M., and Kaetsu, I. (1986) Periodical batch culture of the immobilized growing fungi Sporotrichum cellulophilum producing cellulase in the nonwoven materials, Biotechnol. Bioeng. 28, 1227–1232.

    Article  PubMed  CAS  Google Scholar 

  152. Tamada, M., Kasai, N., and Kaetsu, I. (1987) Continuous cellulase production by immobilized Sporotrichum cellulophilum and continuous saccharification of bagasse, Biotechnol. Bioeng. 30, 697–702.

    Article  PubMed  CAS  Google Scholar 

  153. Tan, L.U.L., Mayers, P., and Saddler, J.N. (1989) Purification and characterization of a thermostable xylanase from thermophilic fungus Thermoascus aurantiacus, Can. J. Microbiol. 37, 689–692.

    Google Scholar 

  154. Tansey, M.R. (1971) Agar diffusion assay of cellulolytic ability of thermophilic fungi, Arch. Mikrobiol. 77, 1–11.

    Article  CAS  Google Scholar 

  155. Tansey, M.R. and Brock, T.D. (1978) Microbial life at high temperatures: ecological aspects, in D. Kushner (ed.), Microbial life in extreme environments, Academic Press.

    Google Scholar 

  156. Tong, C.C., Cole, A.L., and Shepherd, M.G. (1980) Purification and properties of the cellulase from the thermophilic fungus Thermoascus aurantiacus, Biochem. J. 191, 83–94.

    PubMed  CAS  Google Scholar 

  157. Vaheri, M.P., Vaheri, M.E.O., and Kampinen, V.S. (1979) Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol, Eur. J. Appl. Microbiol. Biotechnol. 8, 73–80.

    Article  CAS  Google Scholar 

  158. Von Arx, J.A., Dreyfuss, M., and Muller, E. (1984) A revaluation of Chaetomium and the Chaetomiacae, Persoonia 12, 169–179.

    Google Scholar 

  159. Von Klopotek, A. (1974) Revision der thermophilen Sporotrichum Arten: Chrysosporium thermophilum (Apinis)’ comb. nov. und Chryososporium fergusii spec. nov. = Status conidialis von Corynascus thermophilus (Fergus and Sinden) comb. nov. Arch. Mikrobiol. 98, 366.

    Google Scholar 

  160. Von Oorschot, C.A.N. (1977) The genus Myceliophthora, Persoonia 9, 401–408.

    Google Scholar 

  161. Von Klopotek, A. (1976) Thielavia heterothallica spec. nov. die perfekte Form von Chrysosporium thermophilum, Arch. Microbiol. 107, 223–224.

    Article  Google Scholar 

  162. Ward, O.P. and MooYoung, M. (1988) Thermostable enzymes, Biotech. Adv. 6, 39–69.

    Article  CAS  Google Scholar 

  163. Wase, D.A.J. and Vaid, A.K. (1983) Isolation and mutation of a high cellulolytic strain of Aspergillus fumigatus, Process Biochem. 18, 35–37.

    CAS  Google Scholar 

  164. Wojtczak, G., Breuil, C., Yamada, J., and Saddler, J.N. (1987) A comparison of the thermostability of cellulases from various thermophilic fungi, Appl. Microbiol. Biotechnol. 27, 82–87.

    Article  CAS  Google Scholar 

  165. Wood, T.M. (1969) The cellulase of Fusarium solani, Resolution of the enzyme complex, Biochem. J. 115, 457–464.

    PubMed  CAS  Google Scholar 

  166. Wood, T.M. and McCrae, S.I. (1972) The purification and properties of the Cl component of Trichoderma koningii cellulase, Biochem. J. 128, 1183–1192.

    PubMed  CAS  Google Scholar 

  167. Wood, T.M. and McCrae, S.I. (1982) Purification and some properties of a (1–4)-β-D-glucan glucohydrolase associated with the cellulase from the fungus Penicillium funiculosum, Carbohydr. Res. 110, 291–303.

    Article  CAS  Google Scholar 

  168. Woodward, J. and Wiseman, A. (1982) Fungal and other β-D- glucosidases: their properties and applications, Enz. Microb. Technol. 4, 73–79.

    Article  CAS  Google Scholar 

  169. Yoshioka, H., Anrachu, S.I., and Hayashida, S. (1982) Production and purification of a novel type of CMCase from Humicola grisea var. thermoidea YH-78, Agr. Biol. Chem. 46, 75–82.

    Article  CAS  Google Scholar 

  170. Yu, K.E., Tan, L.U.L., Chan, M.K.-H., Deschatelets, L., and Saddler, J.N. (1987) Production of thermostable xylanase by a thermophilic fungus Thermoascus aurantiacus, Enz. Microb. Technol. 9, 16–24.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Canevascini, G. (1999). Cellulolytic Themrophilic Fungi. In: Johri, B.N., Satyanarayana, T., Olsen, J. (eds) Thermophilic Moulds in Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9206-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9206-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5315-2

  • Online ISBN: 978-94-015-9206-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation