Part of the book series: NATO ASI Series ((NSSE,volume 78/79))

Abstract

Optical fibers are usually considered to be passive(3) or linear media. In actual fact, optical fibers can exhibit wavelength conversion and other nonlinear optical effects at powers as low as a few milliwats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
GBP 9.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. P. Ippen, Low Power Quasi-cw Raman Oscillator, Appl. Phys. Lett. 16, 303 (1970).

    Google Scholar 

  2. R. H. Stolen, E. P. Ippen, and A. R. Tynes, Raman Oscillation in Glass Optical Waveguide, Appl. Phys. Lett. 20, 62 (1972).

    Google Scholar 

  3. R. H. Stolen, Nonlinear Properties of Optical Fibers, in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, Eds. New York: ( Academic Press, 1979 ) p. 125.

    Chapter  Google Scholar 

  4. K. O. Hill, B. S. Kawasaki, D. C. Johnson, and Y. Fujii, Nonlinear Effects in Optical Fibers, in Fiber Optics-Advances in Research and Development, B. Bendow and S. S. Mitra, Eds. ( New York: Plenum, 1979 ) p. 211.

    Chapter  Google Scholar 

  5. R. H. Stolen, Fiber Raman Lasers, in Fiber and Integrated Optics, D. B. Ostrowsky, Ed. ( New York: Plenum, 1979 ) p. 157.

    Chapter  Google Scholar 

  6. R. H. Stolen, Fiber and Integ. Opt., 3, 21 (1980).

    ADS  Google Scholar 

  7. R. H. Stolen and E. P. Ippen, Raman Gain in Glass Optical Waveguides, Appl. Phys. Lett. 22, 276 (1973).

    Google Scholar 

  8. R. H. Stolen and J. E. Bjorkholm, Parametric Amplification and Frequency Conversion in Optical Fibers, IEEE J. Quantum Electron. QE-18, 1062 (1982).

    Google Scholar 

  9. A. Hasegawa and F. Tappert, Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers, I. Anomalous Dispersion, Appl. Phys. Lett. 23, 142 (1973).

    Article  ADS  Google Scholar 

  10. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers, Phys. Rev. Lett. 45, 1095 (1980).

    Article  ADS  Google Scholar 

  11. E. Snitzer, Glass Lasers, Appl. Opt. 5, 1487 (1966).

    Article  ADS  Google Scholar 

  12. R. H. Stolen and C. Lin, Two-Photon and Two-Step Absorption in Glass Optical Waveguide, in Optical Properties of Highly Transparent Solids, S. S. Mitra and B. Bendow, Eds. ( New York: Plenum, 1975 ) p. 307.

    Chapter  Google Scholar 

  13. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication, Appl. Phys. Lett. 32, 647 (1978).

    Google Scholar 

  14. Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, Sum-Frequency Light Generation in Optical Fibers, Opt. Lett. 5, 48 (1980)

    Google Scholar 

  15. Y. Sasaki and Y. Ohmori, Phase-Matched Sum-Frequency Light Generation in Optical Fibers, Appl. Phys. Lett. 39, 466 (1981).

    Google Scholar 

  16. R. H. Stolen, V. Ramaswamy, P. Kaiser, and W. Pleibel, Linear Polarization in Birefringent Single-Mode Fibers, Appl. Phys. Lett. 33, 699 (1978)

    Google Scholar 

  17. I. P. Kaminow, Polarization in Optical Fibers, IEEE J. Quantum Electron. QE-17, 15, (1981).

    Google Scholar 

  18. R. E. Wagner, R. H. Stolen, and W. Pleibel, Polarization Preservation in Multimode Fibers, Electron. Lett. 17, 177 (1981).

    Google Scholar 

  19. N. Bloembergen, Nonlinear Optics, New York: W. A. Benjamin, 1965

    Google Scholar 

  20. R. W. Minck, R. W. Terhune, and C. C. Wang, Nonlinear Optics, Appl. Opt. 5, 1595 (1966).

    ADS  Google Scholar 

  21. H. Matsumura and T. Suganuma, Normalization of Single-Mode Fibers Having an Arbitrary Index Profile, Appl. Opt., 19, 3151 (1980).

    ADS  Google Scholar 

  22. C. A Millar, Direct Method of Determining Equivalent-Step-Index Profiles for Monomode Fibers, Electron. Lett., 17, 458 (1981).

    Google Scholar 

  23. D. Heiman, D. S. Hamilton, and R. W. Hellwarth, Brillouin Scattering Measurements on Optical Glasses. Phys. Rev. B 19, 6583 (1979).

    Article  ADS  Google Scholar 

  24. J. Mons and R. Vacher, Comment on “Brillouin Scattering Measurements on Optical Ôtesses, Phys. Rev. B 22, 1115 (1980).

    Article  Google Scholar 

  25. E. P. Ippen, Nonlinear Effects in Optical Fibers, in Laser Applications to Optics and Spectroscopy, S. F. Jacobs and M. O. Scadly Eds. ( Reading, Mass.: Addison-Wesley, 1975 ) p. 213.

    Google Scholar 

  26. R. G. Smith, Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering, Appl. Opt. 11, 2489 (1972).

    ADS  Google Scholar 

  27. R. H. Stolen, Nonlinearity in Fiber Transmission, Proc. IEEE,. 68, 1232 (1980).

    Article  Google Scholar 

  28. -km F-O Transmission with No Repeaters, Electro-Optical Systems Design, 16 (May, 1982 ).

    Google Scholar 

  29. E. P. Ippen and R. H. Stolen, Stimulated Brillouin Scattering in Optical Fibers, Appl. Phys. Lett. 21, 539 (1972).

    Google Scholar 

  30. N. Uesugi, M. Ikada and Y. Sasaki, Maximum Single-Frequency Input Power in a Long Optical Fiber Determined by Stimulated Brillouin Scattering, Electron. Lett. 17, 379 (1981).

    Google Scholar 

  31. R. H. Stolen, Polarization Effects in Fiber Raman and Brillouin Lasers, IEEE J. Quantum Electron. QE-15, 1157 (1979).

    Google Scholar 

  32. Chinlon Lin, R. H. Stolen, and R. K. Jain, Group Velocity Matching in Optical Fibers, Opt. Lett. 1, 205 (1977).

    Google Scholar 

  33. Y. Ohmori, Y. Sasaki, M. Kawachi, and T. Edahiro, Single-Pass Raman Generation Pumped by a Mode-Locked Laser, Electron Lett. 17, 594 (1981).

    Article  ADS  Google Scholar 

  34. A. Saissy, A. Azema, J. Botineau, and F. Gires, Diffusion Raman Stimulée dans une Fiber in Silici Dopée an Phosphore, J. Phys. Lett. 40, L23 (1979)

    Article  Google Scholar 

  35. V. V. Grigoryants, B. L. Davydov, M. E. Zhabotinski, V. F. Zolin, G. A. Ivanov, V. I. Smirnov, and Y. K. Chamorovski, Spectra of Stimulated Raman Scattering in Silica Fiber Waveguides, Opt. Quantum Electron. 9, 351 (1977).

    Article  Google Scholar 

  36. R. K. Jain, Chinlon Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, A High-Efficiency Tunable cw Raman Oscillator, Appl. Phys. Lett. 30, 162 (1977).

    Google Scholar 

  37. D. C. Johnson, K. O. Hill, B. S. Kawasaki, and D. Kato, Tunable Raman Fiber-Optic Laser, Electron. Lett. 13, 53 (1977).

    Google Scholar 

  38. R. K. Jain, Chinlon Lin, R. H. Stolen, and A. Ashkin, A Tunable Multiple Stokes cw Fiber Raman Oscillator, Appl. Phys. Lett. 31, 89 (1977).

    Google Scholar 

  39. B. S. Kawasaki, D. C. Johnson, Y. Fujii, and K. O. Hill, Bandwidth- Limited Operation of Mode-Locked Brillouin Parametric Oscillator, Appl. Phys. Lett., 32, 429 (1978).

    Google Scholar 

  40. M. A. Duguay, The Ultrafast Optical Kerr Shutter, Prog. Opt. 14, 163 (1976)

    Google Scholar 

  41. J. M. Dziedzic, R. H. Stolen, and A. Ashkin, Optical Kerr Effect in Long Fibers, Appl. Opt., 20, 1403 (1981).

    ADS  Google Scholar 

  42. J. Botineau and R. H. Stolen, The Effect of Polarization on Spectral Broadening in Optical Fibers, J. Opt. Soc. Am. (to be published).

    Google Scholar 

  43. R. H.Stolen, L. F. Mollenauer, A. Ashkin, and J. Botineau, A Fiber Intensity Discriminator for Optical Pulses, IEEE/OSA Conf. Laser and Electro-Opt. Pheonix, Arizona, 1982, paper Thk4.

    Google Scholar 

  44. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, Phase-Matched Three- Wave Mixing in Silica Fiber Optical Waveguides, Appl. Phys. Lett., 24, 308 (1974).

    Google Scholar 

  45. R. H. Stolen, Phase-Matched-Stimulated Four-Photon Mixing in Silica-Fiber Waveguides, IEEE J. Quantum Electron. QE-11, 100 (1975).

    Google Scholar 

  46. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. McDonald, CW Three-Wave Mixing in Single-Mode Optical Fibers, J. Appl. Phys., 49, 5098 (1978).

    Article  ADS  Google Scholar 

  47. K. O. Hill, D. C. Johnson, and B. S. Kawasaki, CW Generation of Multiple Stokes and Anti-Stokes Brillouin Shifted Frequencies, Appl. Phys. Lett., 29, 185 (1976).

    Google Scholar 

  48. R. H. Stolen and Chinlon Lin, Self-Phase-Modulation in Silica Optical Fibers, Phys. Rev. A. 17, 1448 (1978).

    Article  Google Scholar 

  49. D. Gloge, Weakly Guiding Fibers, Appl. Opt. 10, 2252, (1971).

    Article  Google Scholar 

  50. Chinlon Lin and M. A. Bösch, Large-Stokes Shift Stimulated Four-Photon Mixing in Optical Fibers, Appl. Phys. Lett., 38, 479 (1981).

    Google Scholar 

  51. K. O. Hill, D. C. Johnson, and B. S. Kawasaki, Efficient Conversion. of Light Over a Wide Spectral Range by Four-Photon Mixing in a.Multimode Graded-Index Fiber, Appl. Opt. 20, 1075 (1981).

    ADS  Google Scholar 

  52. E. M. Dianov, E. A. Zakhidov, A. Ya. Karasik, P. V. Mamyshev, and A. M. Prokhorov, Stimulated Parametric Four-Photon Mixing in Glass Fibers, Pisma Zh. Eksp. Teor. Fiz. 34, 40 (1981).

    Google Scholar 

  53. R. H. Stolen, M. A. Bösch, and Chinlon Lin, Phase Matching in Birefringent Fibers, Opt. Lett., 6, 213 (1981).

    Article  ADS  Google Scholar 

  54. K. Washio, K. Inoue, and T. Tanigawa, Efficient Generation of Near IR Stimulated Light Scattering in Optical Fibers Pumped in Low-Dispersion Region at 1.3 µm, Electron. Lett., 16, 331 (1980).

    Google Scholar 

  55. Chinlon Lin, W. A. Reed, A. D. Pearson, Hen-Tai Shang, and P. F. Glodis, Designing Single-Mode Fibers for Near-1R (1.1–1.7 µm) Frequency Generation by Phase-Matched Four-Photon Mixing in the Minimum Chromatic Dispersion Region, Electron. Lett., 18, 87 (1982).

    Google Scholar 

  56. A. Hasegawa, and W. F. Brinkman, Tunable Coherent 1R and FIR Sources Utilizing Modulational Instability, IEEE J. Quantum Electron., QE-16, 694 (1980).

    Google Scholar 

  57. R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering, Phys. Rev. A. 2, 60 (1970).

    Article  Google Scholar 

  58. W. J. Tomlinson (unpublished).

    Google Scholar 

  59. R. H. Stolen, L. F. Mollenauer, and W. J. Tomlinson, Observation of Pulse Restoration at the Soliton Period in Optical Fibers (to be published).

    Google Scholar 

  60. R. A. Fisher, P. L. Kelley and T. K. Gustafson, Subpicosecond Pulse Generation Using the Optical Kerr Effect, Appl. Phys. Lett., 14, 140 (1969).

    Google Scholar 

  61. L. F. Mollenauer and R. H. Stolen (unpublished).

    Google Scholar 

  62. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, Compression of Femtosecond Optical Pulses, Appl. Phys. Lett., 40, 761 (1982).

    Google Scholar 

  63. H. Nakatsuka, D. Grischkowsky, and A. C. Salant, Nonlinear Picosecond Pulse Propagation Through Optical Fibers with Positive Group Velocity Dispersion, Phys. Rev. Lett., 47, 1910 (1981).

    Article  Google Scholar 

  64. D. Grischkowsky, and A. C. Balant, Optical Pulse Compression Based on Enhanced Frequency Chir**, Appl. Phys. Lett., 41, 1 (1982).

    Article  ADS  Google Scholar 

  65. R. A. Fisher and W. K. Bischel, Numerical Studies of the Interplay Between Self-Phase Modulation for Intense Plane-Wave Laser Pulses, J. Appl. Phys. 46, 4921 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stolen, R.H. (1984). Active Fibers. In: Ostrowsky, D.B., Spitz, E. (eds) New Directions in Guided Wave and Coherent Optics. NATO ASI Series, vol 78/79. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9550-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9550-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-2689-9

  • Online ISBN: 978-94-010-9550-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation