Measurement of Active Optical Fibers

  • Living reference work entry
  • First Online:
Handbook of Optical Fibers

Abstract

Active optical fiber owns its special optical properties to laser-active dopants in fiber. This chapter presents key properties and their characterization, including measurement principles, experimental techniques, as well as test results, of active optical fiber. Firstly, the fundamental optical properties and relations between light and matter in active fiber are introduced, including Einstein relation, the absorption and emission cross sections, energy transfer, as well as up-conversion. Then the measurements of the absorption, emission, and gain are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • A. Ehn et al., Opt. Express 20(3) (2012)

    Article  CAS  Google Scholar 

  • V. Fernicola, L. Rosso, Time-and frequency-domain analysis of fluorescence lifetime for temperature sensors, in 2000 Conference on Precision Electromagnetic Measurements Digest, IEEE, 2000

    Google Scholar 

  • S.V. Firstov et al., Opt. Express 19(20) (2011)

    Article  CAS  Google Scholar 

  • K. Grattan, Z. Zhang, Fiber Optic Fluorescence Thermometry, in Topics in Fluorescence Spectroscopy (Springer, London, 1994)

    Google Scholar 

  • J. Hang et al., Opt. Express 21(6) (2013)

    Google Scholar 

  • J.A. Jo et al., J. Biomed. Opt. 9(4) (2004)

    Article  CAS  Google Scholar 

  • M.P. Kalita, S. Yoo, J. Sahu, Opt. Express 16(25) (2008)

    Article  CAS  Google Scholar 

  • W. Koechner, Solid-State Laser Engineering (Springer, New York, 2013)

    Google Scholar 

  • R.I. Laming, S.B. Poole, E. Tarbox, Opt. Lett. 13(12) (1988)

    Article  CAS  Google Scholar 

  • W. Miniscalco, M.J. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993)

    Google Scholar 

  • W.J. Miniscalco, R.S. Quimby, Opt. Lett. 16(4) (1991)

    Article  CAS  Google Scholar 

  • S. Nagel, IEEE Commun. Mag. 25(4) (1987)

    Article  Google Scholar 

  • Optical Fiber Loss and Attenuation https://www.fiberoptics4sale.com/blogs/archive-posts/95048006

  • G.D. Peng et al., J. Lightwave Technol. 14(10) (1996)

    Google Scholar 

  • G.D. Peng, J. Zhang, Y. Luo, Z. Sathi, A. Zareanborji, J. Canning, Develo** new active optical fibers with broadband emissions, in Fourth Asia Pacific Optical Sensors Conference 2013 Oct 15, International Society for Optics and Photonics, p. 89240E

    Google Scholar 

  • G.-D. Pengc, High temperature assessment of an Er3+/Yb3+ co-doped phosphosilicate optical fiber for lasers, amplifiers and sensors, in Proceedings of SPIE. https://doi.org/10.1117/12.2194612

  • J.F. Philipps et al., Appl. Phys. B 74(3) (2002)

    Google Scholar 

  • S. Poole, D.N. Payne, M.E. Fermann, Electron. Lett. 21(17) (1985)

    Article  CAS  Google Scholar 

  • K. Riumkin et al., Opt. Lett. 39(8) (2014)

    Google Scholar 

  • E.J.Z. Sathi, Bismuth, Erbium and Ytterbium Co-doped Fibers for Broadband Applications. University of New South Wales, School of Electrical Engineering & Telecommunications. (2015)

    Google Scholar 

  • R. Scheps, Prog. Quantum Electron. 20(4) (1996)

    Google Scholar 

  • N.K. Thipparapu et al., Opt. Lett. 40(10) (2015)

    Article  CAS  Google Scholar 

  • T. Wei et al., Opt. Mater. Express 4(10) (2014)

    Google Scholar 

  • A. Zareanborji et al., Time-resolved emission characteristics of Bi/Er codoped fiber for ultra-broadband applications, in Workshop on Specialty Optical Fibers and their Applications, Optical Society of America, 2013

    Google Scholar 

  • A. Zareanborji et al., Time-resolved fluorescence measurement based on spectroscopy and DSP techniques for Bi/Er codoped fiber characterisation, in 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fiber Technology, IEEE, 2014

    Google Scholar 

  • A. Zareanborji, Y. Luo, G.-D. Peng, Characterization and assessment of multiple bismuth active centres in Bi/Er doped fiber, in 2015 2nd International Conference on Opto-Electronics and Applied Optics (IEM OPTRONIX), IEEE, 2015

    Google Scholar 

  • A. Zareanborji et al., J. Lightwave Technol. 34(21) (2016)

    Google Scholar 

  • J. Zhang et al., Opt. Express 20(18) (2012)

    Google Scholar 

  • B. Zhou et al., Nat Nano 10(11) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui **ao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

**ao, G., Fallah Tafti, G., Zareanborji, A., Ghaznavi, A., Zhao, Q. (2019). Measurement of Active Optical Fibers. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-1477-2_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1477-2_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1477-2

  • Online ISBN: 978-981-10-1477-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation