Genetic Diversity of Enterococci in Bryndza Cheese

  • Conference paper
  • First Online:
Detection of Bacteria, Viruses, Parasites and Fungi

Abstract

Enterococci are gram-positive bacteria occurring in a remarkable array of environments. They can be found in soil, food, and water, and make up a significant portion of the normal gut flora of humans and animals. As other bacteria of the gut flora, enterococci can also cause infectious diseases. On the other hand enterococci are used as probiotics to improve the microbial balance of the intestine, or as a treatment for gastroenteritis in humans and animals. So far, 35 species have been proposed for inclusion in the genus Enterococcus considered the most controversial group of lactic acid bacteria. Studies on the microbiota of many traditional cheeses, especially in the Mediterranean countries, have indicated that enterococci play an important role in the ripening of these cheeses, hence contributing to their typical taste and flavour. Adaptability of enterococci to different substrates and growth conditions (low and high temperature, extreme pH, and salinity), allows them to increase in number during milk refrigeration, survive pasteurisation and fermentation. The presence and growth of enterococci in cheeses results in organoleptically unique products, which contribute to the local cuisine and the region’s heritage. Due to interlinked European and worldwide markets, these cheeses are widely distributed and are internationally considered as delicacies. In addition to these technological properties, numerous strains of enterococci associated with cheeses, mainly E. faecium and E. faecalis, produce one or more bacteriocins, and may be considered as protective towards spoilage and pathogenic bacteria. Slovak Bryndza is a natural, white, spreadable cheese manufactured according to the traditional method by milling a lump of matured sheep cheese. The cheese samples were obtained from five different commercial distributors in Slovakia and were taken at three different seasonal intervals. Enterococci are found in high levels; an average value among Bryndza cheese samples ranged between 107 and 108 CFU g−1. Three hundred and eight presumed enterococcal isolates were recovered from Bryndza cheese. All isolates were identified to the species level using phenotypical methods and commercial biochemical sets and by genotypic tools, i.e. polymerase chain reaction (PCR) using ddl genes and repetitive element sequence (GTG)5 in combination with phenylalanyl-tRNA synthase gene (pheS) sequence analysis and by whole-cell protein analysis (SDS-PAGE). Entero­coccal strains were identified as E. faecium, E. durans, E. faecalis, E. italicus, E. casseliflavus, E. gallinarum, E. hirae, and eight strains were members of the species Lactococcus lactis. Of the seven enterococcal species isolated, three of them, E. faecium, E. faecalis and E. durans were present in all samples studied, with E. faecium as the predominant one (50% or more in cheese samples from all producers and seasons as well). Results of biochemical and molecular identification of enterococcal species were in agreement in more than 90%. Since E. faecium was found to be a dominant species in all analyzed Bryndza cheese samples, this species was studied in more details. Pulsed-field gel electrophoresis of macrorestriction fragments (PFGE), (GTG)5-PCR and ERIC-PCR were applied to evaluate genetic diversity within this species. Among 176 E. faecium isolates 82 were plasmid positive. Their plasmid DNA was isolated and digested by EcoRI and HindIII restriction endonucleases. The patterns obtained were compared with those obtained by PFGE, (GTG)5-PCR and ERIC-PCR. Molecular approaches revealed that there is not only a considerable genetic variability among E. faecium isolates among various Bryndza distributors, but even at one distributor at different intervals during 1 year. Plasmid profiling and ERIC-PCR have offered a higher resolution than PFGE and (GTG)5-PCR. PCR was also used for assessment of presence of vanA and vanB genes and virulence determinants gelE, agg and cytolysin genes, namely: cylL L , cylL S , cylM, cylB and cylA. Vancomycin resistance genes vanA and vanB were not detected. Agar plate testing confirmed the sensitivity to vancomycin. Gene gelE, was found in 20 E. faecalis isolates, but only 13 of them showed gelatinase-positive phenotype. Seven isolates had five cytolysin genes, but none of the isolates exhibited a positive haemolytic phenotype. Four isolates possessed the agg gene. All enterococcal isolates from Bryndza cheese were susceptible to ampicillin, streptomycin, gentamicin, vancomycin, and teicoplanin as determined by the disk diffusion method. Resistance rates of enterococcal isolates to rifampicin, erythromycin, ciprofloxacin, and nitrofurantoin were 24%, 26%, 2%, and 1%, respectively. Thirty percent of the E. faecium isolates, 3% of the E. durans isolates, and 12% of the E. faecalis isolates exhibited multidrug resistance. The highest frequency of resistant enterococci was observed in Bryndza produced in winter season. In addition to this, in a close collaboration with clinics, we have shown that application of non-pathogenic E. faecium have an important immunostimulatory and antimutagenic properties and can be a promising method for elimination of pathogenic bacteria in the case of some diseases. Assumption of health benefit effects of Bryndza cheese was confirmed by results of our historically first clinical tests based on a daily consumption of Bryndza cheese during 8 weeks. Statistically significant decrease of total cholesterol and LDL-cholesterol was observed. Since enterococci occur in a remarkable array of environments incl. food and water, are the most abundant Gram-positive cocci in humans (considered at the same time as the most controversial group of lactic acid bacteria) any study of genetic diversity of enterococci could be useful to evaluate their potential risks or benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB (2000) Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 37:127–137

    Article  PubMed  CAS  Google Scholar 

  • Agerbaek M, Gerdes LU, Richelsen B (1995) Hypocholesterolaemic effect of a new fermented milk product in healthy middle-aged men. Eur J Clin Nutr 49:346–352

    PubMed  CAS  Google Scholar 

  • Agerholm-Larsen L, Raben A, Haulrik N, Haulrik N, Hansen AS, Manders M, Astrup A (2000) Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. Eur J Clin Nutr 54:288–297

    Article  PubMed  CAS  Google Scholar 

  • Allen WD, Lingood MA, Porter P. (1996) Enterococcus organisms and their use as probiotics in alleviating irritable bowel syndrome symptoms. European Patent 0508701 (B1)

    Google Scholar 

  • Andrighetto C, Knijff E, Lombardi A, Torriani S, Vancanneyt M, Kersters K, Swings J, Dellaglio F (2001) Phenotypic and genetic diversity of enterococci isolated from Italian cheeses. J Dairy Res 68:303–316

    Article  PubMed  CAS  Google Scholar 

  • Arizcun C, Barcina Y, Torre P (1997) Identification and characterization of proteolytic activity of Enterococcus spp. isolated from milk and Roncal and Idiazabal cheese. Int J Food Microbiol 38:17–24

    Article  PubMed  CAS  Google Scholar 

  • Barbier N, Saulnier P, Chachaty E, Dumontier S, Andremont A (1996) Random amplified polymorphic DNA ty** versus pulsed-field gel electrophoresis for epidemiological ty** of vancomycin-resistant enterococci. J Clin Microbiol 34:1096–1099

    PubMed  CAS  Google Scholar 

  • Basso A, Goffo A, Rossi G, Conterno N (1994) A preliminary characterization of the microflora of Montasio cheese – Occurrence of galactose fermenting strains in cheese and in natural starter cultures. Mic Aliments Nutri 12:139–144

    Google Scholar 

  • Battistotti B, Bottazzi V, Vola G (1977) Impiego di Str. faecium, Str. thermophilus e bacilli lattici nella caseificazione del formaggio Fontina. Scienza e Tecnica Lattiero-Casearia 28:331

    Google Scholar 

  • Belicová A, Križková L, Dobias J, Krajčovič J, Ebringer L (2004) Synergic activity of selenium and probiotic bacterium Enterococcus faecium M-74 against selected mutagens in Salmonella assay. Folia Microbiol 49:301–305

    Article  Google Scholar 

  • Belicová A, Križková L, Krajčovič J, Jurkovič D, Sojka M, Dušinský R (2007) Antimicrobial susceptibility of Enterococcus species isolated from Slovak Bryndza Cheese. Folia Microbiol 52:115–119

    Article  Google Scholar 

  • Bellomo G, Mangiagli A, Nicastro L, Frigerio G (1980) A controlled doubleblind study of SF68 strain as a new biological preparation for the treatment of diarrhoea in pediatrics. Curr Ther Res 28:927–936

    Google Scholar 

  • Benyacoub J, Czarnecki-Maulden GL, Cavadini C, Sauthier T, Anderson RE, Schiffrin EJ, von der Weid T (2003) Supplementation of food with Enterococcus faecium (SF68) stimulates immune functions in young dogs. J Nutr 133:1158–1162

    PubMed  CAS  Google Scholar 

  • Benyacoub J, Perez PF, Rochat F, Saudan KY, Reuteler G, Antille N, Humen M, De Antoni GL, Cavadini C, Blum S, Schiffrin EJ (2005) Enterococcus faecium SF68 enhances the immune response to Giardia intestinalis in mice. J Nutr 135:1171–1176

    PubMed  CAS  Google Scholar 

  • Bertolami BC, Faludi AA, Batloumi M (1999) Evaluation of the effects of a new fermented milk product (Gaio) on primary hypercholesterolemia. Eur J Clin Nutr 53:97–101

    Article  PubMed  CAS  Google Scholar 

  • Boča M, Vyskočil M, Mikulecký M, Ebringer L, Kolibáš E, Kratochvíľová H, Buzgová D (2004) Complex therapy of chronic hepatic encephalopathy with probiotic: Comparison of two studies (in Slovak). Čas Lék Čes 143:324–328

    Google Scholar 

  • Bouton Y, Guyot P, Grappin R (1998) Preliminary characterization of microflora of Comte cheese. J Appl Microbiol 85:123–131

    Article  PubMed  CAS  Google Scholar 

  • Buydens P, Debeuckelaere S (1996) Efficacy of SF68 in the treatment of acute diarrhea. A placebo-controlled trial. Scand J Gastroenterol 31:887–891

    Article  CAS  Google Scholar 

  • Caridi A, Micari P, Foti F, Ramondino D, Sarullo V (2003) Ripening and seasonal changes in microbiological and chemical parameters of the artisanal cheese Caprino d’Aspromonte produced from raw or thermized goat’s milk. Food Microbiol 20:201–209

    Article  CAS  Google Scholar 

  • Casalta E, Zennaro R (1997) Effect of specific starters on microbiological, biochemical and sensory characteristics of Venaco, a Corsican soft cheese. Sci Aliment 17:79–94

    CAS  Google Scholar 

  • Centeno JA, Cepeda A, Rodríguez-Otero JL, Docampo F (1995) Estudio higienico-sanitario del queso de Arzúa. Alimentaria 33:91–96

    Google Scholar 

  • Centeno JA, Menendez S, Rodriguez-Otero JL (1996) Main microbial flora present as natural starters in Cebreiro raw cow’s-milk cheese (northwest Spain). Int J Food Microbiol 33:307–313

    Article  PubMed  CAS  Google Scholar 

  • Centeno JA, Menendez S, Hermida M, Rodriguez-Otero JL (1999) Effects of the addition of Enterococcus faecalis in Cebreiro cheese manufacture. Int J Food Microbiol 48:97–111

    Article  PubMed  CAS  Google Scholar 

  • Cetinkaya Y, Falk P, Mayhall CG (2000) Vancomycin-resistant enterococci. Clin Microbiol Rev 13:686–707

    Article  PubMed  CAS  Google Scholar 

  • Chiew YF, Hall LM (1998) Comparison of three methods for the molecular ty** of Singapore isolates of enterococci with high-level aminoglycoside resistances. J Hosp Infect 38:223–230

    Article  PubMed  CAS  Google Scholar 

  • Clewell DB (1993) Bacterial sex pheromone-induced plasmid transfer. Cell 73:9–12

    Article  PubMed  CAS  Google Scholar 

  • Coburn PS, Gilmore MS (2003) The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol 5:661–669

    Article  PubMed  CAS  Google Scholar 

  • Coque TM, Willems RJL, Fortun J, Top J, Diz S, Loza E, Canton R, Baquero F (2005) Population structure of Enterococcus faecium causing bacteremia in a Spanish University Hospital: setting the scene for a future increase in vancomycin resistance? Antimicrob Agents Chemother 49:2693–2700

    Article  PubMed  CAS  Google Scholar 

  • Cosentino S, Pisano MB, Corda A, Fadda ME, Piras C (2004) Genotypic and technological characterization of enterococci isolated from artisanal Fiore Sardo cheese. J Dairy Res 71:444–450

    Article  PubMed  CAS  Google Scholar 

  • Creti R, Imperi M, Bertuccini L, Fabretti F, Orefici G, Di Rosa R, Baldassarri L (2004) Survey for virulence determinants among Ent. faecalis isolated from different sources. J Med Microbiol 53:13–20

    Article  PubMed  CAS  Google Scholar 

  • De Vuyst L, Avonts L, Makras E (2004) Probotics, prebiotics and gut health (Chap. 17). In: Remacle C, Reusens B (eds) Functional foods, ageing and degenerative disease. Woodhead Publishing, Cambridge, UK

  • Del Pozo BF, Gaya P, Medina M, Rodriguez-Marin MA, Nuñez M (1988) Changes of microflora of La Serena ewe’s milk cheese during ripening. J Dairy Res 55:449–455

    Article  Google Scholar 

  • Delgado S, Delgado T, Mayo B (2002) Technological performance of several Lactococcus and Enterococcus strains of dairy origin in milk. J Food Prot 65:1590–1596

    PubMed  CAS  Google Scholar 

  • Descheemaeker P, Lammens C, Pot B, Vandamme P, Goossens H (1997) Evaluation of arbitrarily primed PCR analysis and pulsed-field gel electrophoresis of large genomic DNA fragments for identification of enterococci important in human medicine. Int J Syst Bacteriol 47:555–561

    Article  PubMed  CAS  Google Scholar 

  • Descheemaeker P, Leven M, Chapelle S, Lammens C, Hauchecorne M, Wijdooghe M, Vandamme P, Goossens H (2000) Prevalence and molecular epidemiology of glycopeptide-resistant enterococci in Belgian renal dialysis units. J Infect Dis 181:235–241

    Article  PubMed  CAS  Google Scholar 

  • Devoyod JJ (1969) La flore microbienne du fromage de Roquefort. IV Les entérocoques. Lait 49:637–650

    Article  Google Scholar 

  • Devriese LA, Pot B, Collins MD (1993) Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species groups. J Appl Bacteriol 75:399–408

    Article  PubMed  CAS  Google Scholar 

  • Dicuonzo G, Gherardi G, Lorino G, Angeletti S, Battistoni F, Bertuccini L, Creti R, Di Rosa R, Venditti M, Baldassarri L (2001) Antibiotic resistance and genotypic characterization by PFGE of clinical and environmental isolates of enterococci. FEMS Microbiol Lett 201:205–211

    Article  PubMed  CAS  Google Scholar 

  • Domig KJ, Mayer HK, Kneifel W (2003) Methods used for the isolation, enumeration, characterization and identification of Enterococcus spp. 2. Pheno- and genotypic criteria. Int J Food Microbiol 88:165–188

    Article  PubMed  Google Scholar 

  • Donabedian SM, Chow JW, Boyce JM, McCabe RE, Markowitz SM, Coudron PE, Kuritza A, Pierson CL, Zervos MJ (1992) Molecular ty** of ampicillin-resistant, non-ß-lactamase-producing Enterococcus faecium isolates from diverse geographic areas. J Clin Microbiol 30:2757–2761

    PubMed  CAS  Google Scholar 

  • Drahovská H, Kocíncová D, Seman M, Turna J (2002) PCR-based methods for identification of Enterococcus species. Folia Microbiol 47:649–653

    Article  Google Scholar 

  • Drahovská H, Slobodníková L, Kocincová D, Seman M, Končeková R, Trupl J, Turňa J (2004) Antibiotic resistance and virulence factors among clinical and food enterococci isolated in Slovakia. Folia Microbiol 49:763–768

    Article  Google Scholar 

  • Duthoit F, Godon JJ, Montel MC (2003) Bacterial community dynamics during production of registered designation of origin Salers cheese as evaluated by 16S rRNA gene single-strand conformation polymorphism analysis. Appl Environ Microbiol 69:3840–3848

    Article  PubMed  CAS  Google Scholar 

  • Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33:24–27

    PubMed  CAS  Google Scholar 

  • Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635

    Article  PubMed  CAS  Google Scholar 

  • Ebringer L, Ferenčík M, Lahitová N, Kačani L, Michalková D (1995) Antimutagenic and immunostimulatory properties of lactic acid bacteria. World J Microbiol Biotechnol 11:294–298

    Article  Google Scholar 

  • Elsner HA, Sobottka I, Mack D, Claussen M, Laufs R, Wirth R (2000) Virulence factors of Enterococcus faecalis and Enterococcus faecium blood culture isolates. Eur J Clin Microbiol Infect Dis 19:39–42

    Article  PubMed  CAS  Google Scholar 

  • Engelbert M, Mylonakis E, Ausubel FM, Calderwood SB, Gilmore MS (2004) Contribution of gelatinase, serine protease, and fsr to the pathogenesis of Enterococcus faecalis endophthalmitis. Infect Immun 72:3628–3633

    Article  PubMed  CAS  Google Scholar 

  • Ennahar S, Aoude-Werner D, Assobhei O, Hasselmann C (1998) Antilisterial activity of enterocin 81, a bacteriocin produced by Enterococcus faecium WHE 81 isolated from cheese. J Appl Microbiol 85:521–526

    Article  PubMed  CAS  Google Scholar 

  • Ewing W, Haresign W (1989) Probiotics UK. Chalcombe Publications, Bucks, UK

    Google Scholar 

  • Facklam R, Elliot JA (1995) Identification, classification, and clinical relevance of catalase-negative, Gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev 8:479–495

    PubMed  CAS  Google Scholar 

  • Fan Y, Chen S, Yu Y (2006) A probiotic treatment containing Lactobacillus, Bifidobacterium and Enterococcus improves IBS symptoms in an open label trial. Z Zhejiang Univ Sci B7:987–991

    Article  CAS  Google Scholar 

  • Ferenčík M, Ebringer L, Mikeš Z, Jahnová E, Čižnár I (1999) Beneficial modification of the human intestinal microflora using orally administered lactic acid bacteria (in Slovak). Bratisl Lek Listy 100:238–245

    PubMed  Google Scholar 

  • Fines M, Perichon B, Reynolds P, Sahm DF, Courvalin P (1999) Courvalin, VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother 43:2161–2174

    PubMed  CAS  Google Scholar 

  • Fontecha J, Pelaez C, Juarez M, Requena T, Gomez C (1990) Biochemical and microbiological characteristics of artisanal hard goat’s cheese. J Dairy Res 73:1150–1157

    Article  Google Scholar 

  • Foulquie-Moreno MR, Callewaert R, Devreese B, Van Beeumen J, De Vuyst L (2003) Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J Appl Microbiol 94:214–229

    Article  PubMed  CAS  Google Scholar 

  • Foulquie-Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24

    Article  PubMed  CAS  Google Scholar 

  • Franz CMAP, Holzapfel WH, Stiles ME (1999) Enterococci at the crossroads of food safety? Int J Food Microbiol 47:1–24

    Article  PubMed  CAS  Google Scholar 

  • Franz CMAP, Muscholl-Silberhorn AB, Yousif NMK, Vancanneyt M, Swings J, Holzapfel WH (2001) Incidence of virulence factors and antibiotic resistance among enterococci isolated from food. Appl Environ Microbiol 67:4385–4389

    Article  PubMed  CAS  Google Scholar 

  • Franz CMAP, Stiles ME, Schleifer KH, Holzapfel WH (2003) Enterococci in foods — a conundrum for food safety. Int J Food Microbiol 88:105–122

    Article  PubMed  CAS  Google Scholar 

  • Franzetti L, Pompei M, Scarpellini M, Galli A (2004) Phenotypic and genotypic characterization of Enterococcus spp. of different origins. Curr Microbiol 49:225–260

    Article  CAS  Google Scholar 

  • Freitas AC, Pais C, Malcata FX, Hogg TA (1996) Microbiological characterization of Picante da Beira Baixa cheese. J Food Prot 59:155–160

    Google Scholar 

  • Galli D, Wirth R, Wanner G (1989) Identification of aggregation substances of Enterococcus faecalis cells after induction by sex pheromones. An immunological and ultrastructural investigation. Arch Microbiol 151:486–490

    Article  PubMed  CAS  Google Scholar 

  • García MC, Rodríguez MJ, Bernardo A, Tornadijo ME, Carballo J (2002) Study of enterococci and micrococci isolated throughout manufacture and ripening of San Simón cheese. Food Microbiol 19:23–33

    Article  Google Scholar 

  • Gardini F, Martuscelli M, Caruso MC, Galgano F, Crudele MA, Favati F, Guerzoni ME, Suzzi G (2001) Effects of pH, temperature and NaCl concentration on growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int J Food Microbiol 64:105–117

    Article  CAS  Google Scholar 

  • Gelsomino R, Vancanneyt M, Cogan TM, Condon S, Swings J (2002) Source of enterococci in a farmhouse raw-milk cheese. Appl Environ Microbiol 68:3560–3565

    Article  PubMed  CAS  Google Scholar 

  • Gelsomino R, Vancanneyt M, Condon S, Swings J, Cogan TM (2001) Enterococcal diversity in the environment of an Irish Cheddar-type cheesemaking factory. IntJ Food Microbiol 71:177–188

    Article  PubMed  CAS  Google Scholar 

  • Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36

    Article  PubMed  CAS  Google Scholar 

  • Gilmore MS, Segarra RA, Booth MC (1990) An HlyB-type function is required for expression of the Enterococcus faecalis hemolysin/bacteriocin. Infect Immun 58:3914–3923

    PubMed  CAS  Google Scholar 

  • Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB (1994) Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 176:7335–7344

    PubMed  CAS  Google Scholar 

  • Giraffa G (2002) Enterococci from food. FEMS Microbiol Lett 26:163–171

    Article  CAS  Google Scholar 

  • Giraffa G (2003) Functionality of enterococci in dairy products. Int J Food Microbiol 88:215–222

    Article  PubMed  CAS  Google Scholar 

  • Giraffa G, Carminati D, Neviani E (1997) Enterococci isolated from dairy products: a review of risks and potential technological use. J Food Prot 60:732–738

    Google Scholar 

  • Giraffa G, Picchioni N, Neviani E, Carminati D (1995) Production and stability of an Enterococcus faecium bacteriocin during Taleggio cheesemaking and ripening. Food Microbiol 12:301–307

    Article  CAS  Google Scholar 

  • Godfree AF, Kay D, Wyer D (1997) Faecal streptococci as indicators of faecal contamination in water. Soc Appl Bacteriol Symp Ser 26:110S–119S

    Article  PubMed  CAS  Google Scholar 

  • Goh SH, Facklam RR, Chang M, Hill JE, Tyrrell GJ, Burns EC, Chan D, He C, Rahim T, Shaw C, Hemmingsen SM (2000) Identification of Enterococcus species and phenotypically similar Lactococcus and Vagococcus species by reverse checkerboard hybridization to chaperonin 60 gene sequences. J Clin Microbiol 38:3953–3959

    PubMed  CAS  Google Scholar 

  • Gordillo ME, Sigh KV, Murray BE (1993) Comparison of riboty** and pulsed-field gel electrophoresis for subspecies differentiation of strains of Enterococcus faecalis. J Clin Microbiol 31:1570–1574

    PubMed  CAS  Google Scholar 

  • Hamilton-Miller J, Shah S, Smith CT (1996) Probiotic remedies are not what they seem. BMJ 312:55–56

    Article  PubMed  CAS  Google Scholar 

  • Harwood VJ, Delahoya NC, Ulrich RM, Kramer MF, Whitlock JE, Garey JR, Lim DV (2004) Molecular confirmation of Enterococcus faecalis and E. faecium from clinical, faecal and environmental sources. Lett Appl Microbiol 38:476–482

    Article  PubMed  CAS  Google Scholar 

  • Hlivak P, Odraška J, Ferenčík M, Ebringer L, Jáhnová E, Mikeš Z (2005) One year application of probiotic strain Enterococcus faecium M74 decreases serum cholesterol levels. Bratisl Lek Listy 106:67–72

    PubMed  CAS  Google Scholar 

  • Hlubinová K, Rychlý B, Altanerová V, Ebringer L, Altaner Č (2004) Influence of diet containing lyophilized Enterococcus faeciumM-74 with organic selenium on tumor incidence in Apc 1638N mice. Neoplasma 51:341–344

    PubMed  Google Scholar 

  • Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Van Embden JD, Willems RJ (2002) Multilocus sequence ty** scheme for Enterococcus faecium. J Clin Microbiol 40:1963–1971

    Article  PubMed  CAS  Google Scholar 

  • Hufnagel M, Hancock LE, Koch S, Theilacker C, Gilmore MS, Huebner J (2004) Serological and genetic diversity of capsular polysaccharides in Enterococcus faecalis. J Clin Microbiol 42:2548–2557

    Article  PubMed  CAS  Google Scholar 

  • Huycke MM, Spiegel CA, Gilmore MS (1991) Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 35:1626–1634

    Article  PubMed  CAS  Google Scholar 

  • Ike Y, Hashimoto H, Clewell DB (1984) Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulencein mice. Infect Immun 45:528–530

    PubMed  CAS  Google Scholar 

  • Ike Y, Hashimoto H, Clewell DB (1987) High incidence of hemolysin production by Enterococcus (Streptococcus) faecalis strains associated with human parenteral infections. J Clin Microbiol 25:1524–1528

    PubMed  CAS  Google Scholar 

  • Jackson CR, Fedorka-Cray PJ, Barrett JB (2004) Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol 42:3558–3565

    Article  PubMed  CAS  Google Scholar 

  • Jett BD, Huycke MM, Gilmore MS (1994) Virulence of enterococci. Clin Microbiol Rev 7:462–478

    PubMed  CAS  Google Scholar 

  • Jurkovič D, Križková L, Dušinský R, Belicová A, Sojka M, Krajčovič J, Ebringer L (2006a) Identification and characterization of enterococci from bryndza cheese. Lett Appl Microbiol 42:553–559

    PubMed  Google Scholar 

  • Jurkovič D, Križková L, Sojka M, Belicová A, Dušinský R, Krajčovič J, Snauwaert C, Naser S, Vandamme P, Vancanneyt M (2006b) Molecular identification and diversity of enterococci isolated from slovak bryndza cheese. J Gen Appl Microbiol 52:329–337

    Article  PubMed  Google Scholar 

  • Jurkovič D, Križková L, Sojka M, Takáčová M, Dušinský R, Krajčovič J, Vandamme P, Vancanneyt M (2007) Genetic diversity of Enterococcus faecium isolated from bryndza cheese. Int J Food Microbiol 116:82–87

    Article  PubMed  CAS  Google Scholar 

  • Kayaoglu G, Orstavik D (2004) Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med 15:308–320

    Article  PubMed  Google Scholar 

  • Kayser FH (2003) Safety aspects of enterococci from the medical point of view. Int J Food Microbiol 88:255–262

    Article  PubMed  CAS  Google Scholar 

  • Ke D, Picard FJ, Martineau F, Ménard Ch, Roy PH, Ouellette M, Bergeron MG (1999) Development of a PCR assay for rapid detection of enterococci. J Clin Microbiol 37:3497–3503

    PubMed  CAS  Google Scholar 

  • Keresteš J, Selecký J (2003) Slovak bryndza cheese. In: Keresteš, J (ed) Dairy industry in Middle Slovakia, pp 109–122. Eminent, Považská Bystrica, Slovak

    Google Scholar 

  • Klein G (2003) Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int J Food Microbiol 88:123–131

    Article  PubMed  Google Scholar 

  • Kuhn I, Burman LG, Haeggman S, Tullus K, Murray BE (1995) Biochemical fingerprinting compared with riboty** and pulsed-field gel electrophoresis of DNA for epidemiological ty** of enterococci. J Clin Microbiol 33:2812–2817

    PubMed  CAS  Google Scholar 

  • Kumada M, Senpuku H, Motegi M, Nkao R, Yonezawa H, Yamamura H, Watanabe H, Tagami J (2008) Effects of Enterococcus faecium on Streptococcus mutans biofilm formation using flow cell system. J Oral Biosci 50:68–76

    Article  Google Scholar 

  • Lauková A, Czikková S (1999) The use of enterocin CCM 4231 in soy milk to control the growth of Listeria monocytogenes and Staphylococcus aureus. J Appl Microbiol 87:182–186

    Article  PubMed  Google Scholar 

  • Lauková A, Czikková S (2001) Antagonistic effect of enterocin CCM 4231 from Enterococcus faecium on “bryndza”, a traditional Slovak dairy product from sheep milk. Microbiol Res 156:31–34

    Article  PubMed  Google Scholar 

  • Laurenčik M, Sulo P, Slavikova E, Pieckova E, Seman M, Ebringer L (2008) The diversity of eukaryotic microbiota in the traditional Slovak sheep cheese – Bryndza. Int J Food Microbiol 127:176–179

    Article  PubMed  CAS  Google Scholar 

  • Leclercq R (1997) Enterococci acquire new kinds of resistance. Clin Infect Dis 24:S80–S84

    Article  PubMed  Google Scholar 

  • Ledda A, Scintu MF, Pirisi A, Sanna S, Mannu L (1994) Technological characterization of lactococci and enterococci for the manufacture of Fiore Sardo sheep cheese. Scienza e Tecnica Lattiero-Casearia 45:443–456

    CAS  Google Scholar 

  • Litopolou-Tzanetaki E (1990) Changes in numbers and kinds of lactic acid bacteria during ripening of Kefalotyri cheese. J Food Sci 55:111–113

    Article  Google Scholar 

  • Litopolou-Tzanetaki E, Tzanetakis N, Vafopoulou-Mastrojiannaki A (1993) Effect of type of lactic starter on microbiological chemical and sensory characteristics of feta cheese. Food Microbiol 10:31–41

    Article  Google Scholar 

  • Liu D, Wang C, Swiatlo EJ, Lawrence ML (2005) PCR amplification of a species-specific putative transcriptional regulator gene reveals the identity of Enterococcus faecalis. Microbiol Res 156:944–948

    Article  CAS  Google Scholar 

  • Loguercio C, Abbiati R, Rinaldi M, Romano A, Vecchio D, Blanco C, Coltorti M (1995) Long-term effects of Enterococcus faecium SF68 versus lactulose in the treatment of patients with cirrhosis and grade 1-2 hepatic encephalopathy. J Hepatol 23:39–46

    Article  PubMed  CAS  Google Scholar 

  • Lopes MFS, Ribeiro T, Abrantes M, Marques JJF, Tenreiro R, Crespo MTB (2005) Antimicrobial resistance profiles of dairy and clinical isolates and type strains of enterococci. Int J Food Microbiol 103:191–198

    Article  CAS  Google Scholar 

  • Macedo AC, Malcata FX, Hogg TA (1995) Microbiological profile in Serra ewe’s cheese during ripening. J Appl Microbiol 79:1–11

    Article  Google Scholar 

  • Maisnier-Patin S, Forni E, Richard J (1996) Purification, partial characterisation and mode of action of enterococcin EFS2, an antilisterial bacteriocin produced by a strain of Enterococcus faecalis isolated from a cheese. Int J Food Microbiol 30:255–270

    Article  PubMed  CAS  Google Scholar 

  • Majhenič AČ, Rogelj I, Perko B (2005) Enterococci from Tolmic cheese: Population structure, antibiotic susceptibility and incidence of virulence determinants. Int J Food Microbiol 102:239–244

    Article  CAS  Google Scholar 

  • Mannu L, Paba A (2002) Genetic diversity of lactococci and enterococci isolated from home-made Pecorino Sardo ewes’ milk cheese. J Appl Microbiol 92:55–62

    Article  PubMed  CAS  Google Scholar 

  • Mannu L, Paba A, Pes M, Floris R, Scintu MF, Morelli L (1999) Strain ty** among enterococci isolated from home-made Pecorino Sardo cheese. FEMS Microbiol Lett 170:25–30

    Article  PubMed  CAS  Google Scholar 

  • Manolopoulou E, Sarantinopoulos P, Zoidou E, Aktypis A, Moschopoulou E, Kandarakis IG, Anifantakis EM (2003) Evolution of microbial populations during traditional Feta cheese manufacture and ripening. Int J Food Microbiol 82:153–161

    Article  PubMed  Google Scholar 

  • Marino M, Maifreni M, Rondinini G (2003) Microbiological characterization of artisanal Montasio cheese: analysis of its indigenous lactic acid bacteria. FEMS Microbiol Lett 229:133–140

    Article  PubMed  CAS  Google Scholar 

  • Mego M, Ebringer L, Drgoňa L, Mardiak J, Trupl J, Greksak R, Nemová I, Oravcová E, Zajac V, Koza I (2005a) Prevention of febrile neutropenia in cancer patients by probiotic strain Enterococcus faecium M-74. Pilot study phase I. Neoplasma 52:76–80

    Google Scholar 

  • Mego M, Končeková R, Mikušková E, Drgoňa L, Ebringer L, Demitrovičová L, Nemová I, Trupl J, Mardiak J, Koza I, Zajac V (2006) Prevention of febrile neutropenia in cancer patients by probiotic strain of Enterococcus faecium M-74. Phase II study. Supp Care Cancer 14:285–290

    Article  CAS  Google Scholar 

  • Mego M, Májek J, Končeková R, Ebringer L, Čierniková S, Rauko P, Kováč M, Trupl J, Slezák P, Zajac V (2005b) Intramucosal bacteria in colon cancer and their elimination by probiotic strain Enterococcus faecium M-74 with organic selenium. Folia Microbiol 50:443–447

    Article  CAS  Google Scholar 

  • Menéndez S, Godínez R, Centeno JA, Rodríguez-Otero JL (2001) Microbiological, chemical and biochemical characteristics of “Tetilla” raw cows-milk cheese. Food Microbiol 18:151–158

    Article  CAS  Google Scholar 

  • Mikeš Z, Ebringer L, Boča M, Dušinský R, Jahnová E (2005) Some cardiovascular factors after consumption of the traditional Slovak bryndza cheese – pilot study (in Slovak). Geriatria 1:29–36

    Google Scholar 

  • Mikeš Z, Ferenčík M, Jahnová E, Ebringer L, Čižnár I (1995) Hypocholesterolemic and immunostimulatory effects of orally applied Enterococcus faecium M-74 in man. Folia Microbiol 40:639–646

    Article  Google Scholar 

  • Monstein HJ, Quednau M, Samuelsson A, Ahrné S, Isaksson B, Jonasson J (1998) Division of the genus Enterococcus into species groups using PCR-based molecular ty** methods. Microbiology 144:1171–1179

    Article  PubMed  CAS  Google Scholar 

  • Morea M, Baruzzi F, Cocconcelli PS (1999) Molecular and physiological characterization of dominant bacterial populations in traditional Mozzarella cheese processing. J Appl Microbiol 87:574–582

    Article  PubMed  CAS  Google Scholar 

  • Mundy LM, Sahm DF, Gilmore MS (2000) Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 13:513–522

    Article  PubMed  CAS  Google Scholar 

  • Murray BE (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65

    PubMed  CAS  Google Scholar 

  • Murray BE, Singh KV, Heath JD, Sharma BR, Weinstock GM (1990) Comparison of genomic DNAs of different enterococcal isolates using restriction endonucleases with infrequent recognition sites. J Clin Microbiol 28:2059–2063

    PubMed  CAS  Google Scholar 

  • Nallapareddy SR, Qin X, Weinstock GM, Höök M, Murray BE (2000) Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 68:5218–5224

    Article  PubMed  CAS  Google Scholar 

  • Naser S, Thompson FL, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I, Thompson CC, Vancanneyt M, Swings J (2005) Phylogeny and identification of enterococci by atpA gene sequence analysis. J Clin Microbiol 43:2224–2230

    Article  PubMed  CAS  Google Scholar 

  • NCCLS (2003) National Committee for Clinical Laboratory Standards Document M100-S13: Performance standards for antimicrobial susceptibility testing. 13th Informational Supplement NCCLS, Villanova, PA

    Google Scholar 

  • Núñez M, Rodríguez JL, García E, Gaya P, Medina M (1997) Inhibition of Listeria monocytogenes by enterocin 4 during the manufacture and ripening of Manchego cheese. J Appl Microbiol 83:671–677

    Article  PubMed  Google Scholar 

  • Ordoñez JA, Barneto R, Ramos M (1978) Studies on Manchego cheese ripened in olive oil. Milchwissenschaft 33:609–612

    Google Scholar 

  • Ozawa Y, Courvalin P, Gaiimand M (2000) Identification of enterococci at the species level by sequencing of the genes for D-alanine: D-alanine ligases. Sys Appl Microbiol 23:230–237

    Article  CAS  Google Scholar 

  • Papageorgiou DK, Abrahim A, Bori M, Doundounakis S (1998) Chemical and bacteriological characteristics of Pichtogalo Chanion cheese and mesophilic starter cultures for its production. J Food Prot 61:688–692

    PubMed  CAS  Google Scholar 

  • Parente E, Villani F, Coppola R, Coppola S (1989) A multiple strain starter for water-buffalo Mozzarella cheese manufacture. Lait 69:271–279

    Article  Google Scholar 

  • Patel R, Piper KE, Rouse MS, Steckelberg JM, Uhl JR, Kohner P, Hopkins MK, Cockerill FR, Kline BC (1998) Determination of 16S rRNA sequences of enterococci and application to species identification of nonmotile Enterococcus gallinarum isolates. J Clin Microbiol 36:3399–3407

    PubMed  CAS  Google Scholar 

  • Perichon B, Reynolds P, Courvalin P (1997) VanD-type glycopeptide-resistant Enterococcus faecium BM4339. Antimicrob Agents Chemother 41:2016–2018

    PubMed  CAS  Google Scholar 

  • Perlada DE, Smulian AG, Cushion MT (1997) Molecular epidemiology and antibiotic susceptibility of enterococci in Cincinnati, Ohio: a prospective citywide survey. J Clin Microbiol 35:2342–2347

    PubMed  CAS  Google Scholar 

  • Peters J, Mac K, Wichmann-Schauer H, Klein G, Ellerbroek L (2003) Species distribution and antibiotic resistance patterns of enterococci isolated from food of animal origin in Germany. Int J Food Microbiol 88:311–314

    Article  PubMed  CAS  Google Scholar 

  • Pintado ME, Santos CC, Malcata FX (2001) Activity of adventitious Enterococcus strains on model curdled caprine milk: microbial growth and evolution of concentration of organic acids and lactose throughout time. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 66:613–616

    PubMed  CAS  Google Scholar 

  • Pollmann M, Nordhoff M, Pospischil A, Tedin K, Wieler LH (2005) Effect of a probiotic strain of Enterococcus faecium on the rate of natural chlamydia infection in swine. Infect Immun 73:4346–4353

    Article  PubMed  CAS  Google Scholar 

  • Poyart C, Quesnes G, Trieu-Cuot P (2000) Sequencing the gene encoding Manganese Dependant superoxyde dismutase for rapid species identification of enterococci. J Clin Microbiol 38:415–418

    PubMed  CAS  Google Scholar 

  • Poznanski E, Cavazza A, Cappa F, Cocconcelli PS (2004) Indigenous raw milk microbiota influences the bacterial development in traditional cheese from an alpine natural park. Int J Food Microbiol 92:141–151

    Article  PubMed  CAS  Google Scholar 

  • Prodromou K, Thasitou P, Haritonidou E, Tzanetakis N, Litopoulou-Tzanetaki E (2001) Microbiology of “Orinotyri” a ewe’s milk cheese from the Greek mountains. Food Microbiol 18:319–328

    Article  CAS  Google Scholar 

  • Pryce TM, Wilson RD, Kulski JK (1999) Identification of enterococci by riboty** with horseradish-peroxidase-labelled 16S rDNA probes. J Microbiol Methods 36:147–155

    Article  PubMed  CAS  Google Scholar 

  • Rich RL, Kreikemeyer B, Owens RT, LaBrenz S, Narayana SV, Weinstock GM, Murray BE, Hook M (1999) Ace is a collagen-binding MSCRAMM from Enterococcus faecalis. J Biol Chem 274:26939–26945

    Article  PubMed  CAS  Google Scholar 

  • Rossi EA, Vendramini RC, Carlos IZ, Pei YC, de Valdez GF (1999) Development of a novel fermented soymilk product with potential probiotic properties. Eur Food Res Technol 209:305–307

    Article  CAS  Google Scholar 

  • Rovenský J, Švik K, Stančíková M, Ebringer L, Ferenčík M (2002) Treatment of experimental adjuvant arthritis with the combination of methotrexate and lyophilized Enterococcus faecium eniched with organic selenium. Folia Microbiol 47:573–578

    Article  Google Scholar 

  • Sannomiya PRA, Craig DB, Clewell A, Suzuki M, Fu**o G, Till O, Marasco WA (1990) Characterization of a class of nonformylated Enterococcus faecalis-derived neutrophil chemotactic peptides: the sex pheromones. Proc Natl Acad Sci USA 87:66–70

    Article  PubMed  CAS  Google Scholar 

  • Sarantinopoulos P, Leroy F, Leontopoulou E, Georgalaki MD, Kalantzopoulos G, Tsakalidou E, De VL (2002) Bacteriocin production by Enterococcus faecium FAIR-E 198 in view of its application as adjunct starter in Greek Feta cheese making. Int J Food Microbiol 72:125–136

    Article  PubMed  CAS  Google Scholar 

  • Schleifer KH, Kilpper-Balz R (1984) Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Bacteriol 34:31–34

    Article  Google Scholar 

  • Schleifer KH, Kilpper-Bälz R (1987) Molecular and chemotaxonomic approaches to the classification of streptococci, enterococci and lactococci: a review. Syst Appl Microbiol 6:1–19

    Article  Google Scholar 

  • Semedo T, Santos MA, Lopes MFS, Marques JJF, Crespo MTB, Tenreiro R (2003) Virulence factors in food, clinical and reference enterococci: a common trait in the genus? Syst Appl Microbiol 26:13–22

    Article  PubMed  Google Scholar 

  • Shankar N, Baghdayan AS, Gilmore MS (2002) Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417:746–750

    Article  PubMed  CAS  Google Scholar 

  • Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS, Johnson DE (2001) Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun 69:4366–4372

    Article  PubMed  CAS  Google Scholar 

  • Simonetta AC, Moragues de Velasco LG, Frisón LN (1997) Antibacterial activity of enterococci strains against Vibrio cholerae. Lett Appl Microbiol 24:139–143

    Article  PubMed  CAS  Google Scholar 

  • Singh KV, Coque TM, Weinstock GM, Murray BE (1998) In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification. FEMS Immunol Med Microbiol 21:323–331

    PubMed  CAS  Google Scholar 

  • Son R, Nimita F, Rusul G, Nasreldin E, Samuel L, Nishibuchi M (1999) Isolation and molecular characterization of vancomycin-resistant Enterococcus faecium in Malaysia. Lett Appl Microbiol 29:118–122

    Article  PubMed  CAS  Google Scholar 

  • Su A, Sulavik MC, He P, Mäkinen KK, Mäkinen P, Fiedler S, Wirth R, Clewell DB (1991) Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. Liquefaciens Infect Immun 59:415–420

    CAS  Google Scholar 

  • Süßmuth SD, Muscholl-Silberhorn A, Wirth R, Susa M, Marre R, Rozdzinski E (2002) Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infect Immun 68:4900–4906

    Article  Google Scholar 

  • Suzzi G, Caruso M, Gardini F, Lombardi A, Vannini L, Guerzoni ME, Andrighetto C, Lanorte MT (2000) A survey of the enterococci isolated from an artisanal Italian goat’s cheese (semicotto caprino). J Appl Microbiol 89:267–274

    Article  PubMed  CAS  Google Scholar 

  • Švec P, Devriese LA, Sedláček I, Baele M, Vancanneyt M, Haesebrouck F, Swings J, Doškář J (2001) Enterococcus haemoperoxidus sp. nov. and Enterococcus moraviensis sp. nov., isolated from water. Int J Syst Evol Microbiol 51:1567–1574

    PubMed  Google Scholar 

  • Švec P, Vancanneyt M, Seman M, Snauwaert C, Lefebvre K, Sedlacek I, Swings J (2005) Evaluation of (GTG)5-PCR for identification of Enterococcus spp. FEMS Microbiol Lett 247:59–63

    Article  PubMed  CAS  Google Scholar 

  • Tannock GW, Cook G (2002) Enterococci as members of the intestinal microflora of humans. In: Gilmore MS, Clewell DB,Courvalin P, Dunny GM, Murray BE, Rice LB (eds) The enterococci: pathogenesis, molecular biology, and antibiotic resistance. ASM, Washington, DC

    Google Scholar 

  • Tavaria FK, Malcata FX (1998) Microbiological characterization of Serra da Estrela cheese throughout its Appelation d’Origine Protegée region. J Food Prot 61:601–607

    PubMed  CAS  Google Scholar 

  • Teng LJ, Hsueh PR, Wang YH, Lin HM, Luh KT, Ho SW (2001) Determination of Enterococcus faecalis groESL Full-Length sequence and application for species identification. J Clin Microbiol 39:3326–3331

    Article  PubMed  CAS  Google Scholar 

  • Teuber M, Meile L, Schwarz F (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie van Leeuwenhoek 76:115–137

    Article  PubMed  CAS  Google Scholar 

  • Titze-de-Almeida R, Willems RJL, Top J, Pereira Rodrigues I, Fonseca Ferreira R, Boelens H, Brandileone MCC, Zanella RC, Soares Felipe MS, van Belkum A (2004) Multilocus variable-number tandemrepeat polymorphism among Brazilian Enterococcus faecalis strains. J Clin Microbiol 42:4879–4881

    Article  PubMed  CAS  Google Scholar 

  • Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, Amorena B, Leiva L, Penadés JR, Lasa I (2001) The enterococcal surface protein, esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67:4538–4545

    Article  PubMed  CAS  Google Scholar 

  • Top J, Schouls LM, Bonten MJ, Willems RJ (2004) Multiple-locus variable-number tandem repeat analysis, a novel ty** scheme to study the genetic relatedness and epidemiology of Enterococcus faecium isolates. J Clin Microbiol 42:4503–4511

    Article  PubMed  CAS  Google Scholar 

  • Tornadijo ME, Fresno JM, Bernardo A, Marin Sarmiento R, Carballo J (1995) Microbiological changes throughout the manufacturing and ripening of Spanish goat’s raw milk cheese (Armada variety). Lait 75:551–570

    Article  CAS  Google Scholar 

  • Torriani S, Dellaglio F, Lombardi A (1998) Microbiological contribution to the study of Monte Veronese cheese. Proceedings of the Symposium “Quality and Microbiology of Traditional and Raw Milk Cheeses”, Dijon, France, pp 239–250

    Google Scholar 

  • Treitman AN, Yarnold PR, Warren J, Noskin GA (2005) Emerging incidence of Enterococcus faecium among hospital isolates (1993 to 2002). J Clin Microbiol 43:462–463

    Article  PubMed  Google Scholar 

  • Tyrrell GJ, Bethune RN, Willey B, Low DE (1997) Species identification of enterococci via intergenic ribosomal PCR. J Clin Microbiol 35:1054–1060

    PubMed  CAS  Google Scholar 

  • Tzanetakis N, Litopoulou-Tzanetaki E (1992) Changes in numbers and kinds of lactic acid bacteria in Feta and Teleme, two Greek cheeses from ewe’s milk. J Dairy Sci 75:1389–1393

    Article  Google Scholar 

  • Ulrich A, Muller T (1998) Heterogeneity of plant-associated streptococci as characterized by phenotypic features and restrict tion analysis of PCR-amplified 16S rDNA. J Appl Microbiol 84:293–303

    Article  PubMed  CAS  Google Scholar 

  • Vakulenko SB, Donabedian SM, Voskresenskiy AM, Zervos MJ, Lerner SA, Chow JW (2003) Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob Agents Chemother 47:1423–1426

    Article  PubMed  CAS  Google Scholar 

  • Vancanneyt M, Lombardi A, Andrighetto C, Knijff E, Torriani S, Bjorkroth KJ, Franz CM, Foulquie Moreno MR, Revets H, De Vuyst L, Swings J, Kersters K, Dellaglio F, Holzapfel WH (2002) Intraspecies genomic groups in Enterococcus faecium and their correlation with origin and pathogenicity. Appl Environ Microbiol 68:1381–1390

    Article  PubMed  CAS  Google Scholar 

  • Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Villani F, Coppola S (1994) Selection of enterococcal strains for water-buffalo Mozzarella cheese manufacture. Annali di Microbiologia ed Enzimologia 44:97–105

    CAS  Google Scholar 

  • Volokhov VD, Chizhikov V, Chumakov K, Rasooly A (2003) Microarray analysis of erythromycin resistance determinants. J Appl Microbiol 95:787–798

    Article  PubMed  CAS  Google Scholar 

  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24, 179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    Article  PubMed  Google Scholar 

  • Wunderlich PF, Braun L, Fumagalli I, D´Apuzzo V, Heim F, Karli M, Lodi R, Politta G, Vonbank F, Zdeltner L (1989) Double-blind report on the efficacy of lactic acid producing Enterococcus SF68 in the prevention of antibiotic-associated diarrhoea and in the treatment of acute diarrhoea. J Int Med Res 17:333–338

    Google Scholar 

  • Zárate V, Belda F, Pérez C, Cardell E (1997) Changes in the microbial flora of Tenerife goat’s milk cheese during ripening. Int Dairy J 7:635–641

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by VEGA grants No. 1/1269/04, 1/0114/08, and 1/0132/08, by grant VTP 178/2000, and by grant AV 4/2034/08 from the Ministry of Education of the Slovak Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Krajčovič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Dušinský, R. et al. (2010). Genetic Diversity of Enterococci in Bryndza Cheese. In: Viola Magni, M. (eds) Detection of Bacteria, Viruses, Parasites and Fungi. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8544-3_5

Download citation

Publish with us

Policies and ethics

Navigation