Plant Responses to Salinity

  • Chapter
Physiology of Cotton

Abstract

Cotton is one of the most salt-tolerant of the major annual crops, but the variable nature of both salinity and the plant’s response to it make salinity a far from simple problem. Here we consider the response of cotton to salinity, and possible means of improving cotton yields on saline land or with saline water. This review will cover most of the research published in the last 30 years, but space does not permit a more extensive review of the older literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • Abd-Ella, M.K.A. and E.E. Shalaby. 1993. Cotton response to salinity and different potassium/sodium ratio in irrigation water. J. Agron. Crop Sci. 170:25-31.

    Article  CAS  Google Scholar 

  • Abul-Naas, A.A. and M.S. Omran. 1974. Salt tolerance of seventeen cotton cultivars during germination and early seedling development. Z. Ack. Pflanzenbau 140:229-236.

    Google Scholar 

  • Abdullah, Z. and R. Ahmad. 1986. Salinity induced changes in the reproductive physiology of cotton plants. In: R. Ahmad and A. San Pietro (eds.). Prospects for Biosaline Research. Dept. Botany, Univ. of Karachi, Pakistan. pp. 125-137.

    Google Scholar 

  • Afzal, M. 1964. Sodium chloride as fertilizer. W. Pakistan Agric. Res. 2:111-112.

    Google Scholar 

  • Ahmad, M. and M.I. Makhdum. 1992. Effects of salinitysodicity on different phases of cotton plant, its fibre quality and oil contents - A review. Agricultural Reviews 13:107-118.

    Google Scholar 

  • Ahmad, R. and Z. Abdullah. 1980. Biomass production of food and fiber crops using highly saline water under desert conditions. In: A. San Peitro (ed.). Biosaline Research. Plenum Press, New York. pp. 149-163.

    Google Scholar 

  • Ahmed, F.M. 1994. Effect of saline water irrigation at different stages of growth on cotton plant. Assiut J. of Agric. Sci. 25:63-74.

    Google Scholar 

  • Aladin, N.V. and W.T.W. Potts. 1992. Changes in the Aral Sea ecosystems during the period 1960-1990. Hydrobiologia 237:67-79.

    Article  CAS  Google Scholar 

  • Ashour, N.I. and A.M. Abd El-Hamid. 1970. Relative salt tolerance of Egyptian cotton varieties during germination and early seedlings development. Plant and Soil 33:493-495.

    Article  Google Scholar 

  • Ashraf, M. and S. Ahmad. 1999. Exploitation of intra-specific genetic variation for improvement salt (NaCl) tolerance in upland cotton (Gossypium hirsutum L.). Hereditas 131:253-256.

    Article  Google Scholar 

  • Ayars, J.E. and R.A. Schoneman. 1986. Use of saline water from a shallow water table by cotton. Trans. A.S.A.E. 29:1674-1678.

    Google Scholar 

  • Bajwa, M.S., O.P. Choudhary, and A.S. Josan. 1992. Effect of continuous irrigation with sodic and saline-sodic waters on soil properties and crop yields under cotton-wheat rotation in northwestern India. Agric. Water Manage. 22:345-356.

    Article  Google Scholar 

  • Bandyopadhyay, B.K. and H.S. Sen. 1992. Effect of excess soil water conditions for a short period on growth and nutrition of crops on coastal saline soil. J. Indian Soc. Soil Sci. 40:823-827.

    CAS  Google Scholar 

  • Bouzaidi, A. and S.E. Amami. 1980. Irrigation of two cotton varieties in field trials Physiologie Vegetale 18:35-44.

    CAS  Google Scholar 

  • Bozcuk, S. 1990. Interaction between salt and kinetin on seed germination of some crop plants. Doga, Turk Botanik Dergisi 14:139-149.

    Google Scholar 

  • Bradford, S. and J. Letey. 1992. Cyclic and blending strategies for using nonsaline and saline waters for irrigation. Irrig. Sci. 13:123-128.

    Google Scholar 

  • Brown, L.R. 1991. The Aral Sea. Disaster area and interdisciplinary solution. Interdisciplinary Science Reviews 16:345-350.

    Google Scholar 

  • Brugnoli, E. and O. Björkman. 1992. Growth of cotton under continuous salinity stress - influence on allocation pattern, stomatal and nonstomatal components of photosynthesis and dissipation of excess light energy. Planta, 187:335-347.

    Article  CAS  Google Scholar 

  • Brugnoli, E. M. and Lauteri. 1991. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol. 95:628-635.

    Article  PubMed  CAS  Google Scholar 

  • Busch, C.D. and F. Turner, Jr. 1965. Sprinkling cotton with saline water. Prog. Agric. Ariz. 17:27-28.

    Google Scholar 

  • Busch, C.D. and F. Turner, Jr. 1967. Sprinkler irrigation with high salt-content water. Trans. A.S.A.E. 10:494-496.

    Google Scholar 

  • Chang, C.W. and H.E. Dregne. 1955. Effects of exchangeable Na on soil properties and on growth and cation content of alfalfa and cotton. Soil Sci. Soc. Am. Proc. 19:29-35.

    Article  CAS  Google Scholar 

  • Chen, T. and K.H. Kreeb. 1989. Combined effects of drought and salt stress on growth, hydration and pigment composition in Gossypium hirsutum L. In: K.H. Kreeb, H. Richter, and T.M. Hinckley (eds.). Structural and Functional Responses to Environmental Stresses: Water Shortage. SPB Academic Publishing, The Hague. pp. 165-177.

    Google Scholar 

  • Curtis, P.S. and A. Läuchli. 1986. The role of leaf area development and photosynthetic capacity in determining growth of kenaf under moderate salt stress. Aust. J. Plant Physiol. 18:553-565.

    Article  Google Scholar 

  • Dracup, M. 1991. Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms. Aust. J. Plant Physiol. 18:1-15.

    Article  CAS  Google Scholar 

  • Dukhovny, V.A. 2000. The regional water strategy as mechanism and set of measures for sustainable water management of the Aral Sea Basin. Water and Land Resources Development and Management for Sustainable Use Denpasas, Bali, Indonesia, 19-26 July, 1998.

    Google Scholar 

  • Eaton, F.M. 1944. Deficiency, toxicity, and accumulation of boron in plants. Agric. Res. 69:237-277.

    CAS  Google Scholar 

  • Eaton, F.M. and J.E. Bernardin. 1964. Mass-flow an salt accumulation by plants on water versus soil cultures. Soil Sci. 97:411-416.

    Article  CAS  Google Scholar 

  • El-Gharib, E.A. and W. Kadry. 1983. Effect of potassium on tolerance of cotton plants to salinity of irrigation water. Ann. Agric. Sci. Moshtohor 20:27-34.

    Google Scholar 

  • El-Saidi, M.T. and W.A. Hegazy. 1980. Effect of using saline water for irrigation at different growth stages on yield and some physiological processes of cotton plant. Agric. Res. Rev. Cairo, 58:337-355.

    Google Scholar 

  • El-Zahab, A.A.A. 1971b. Salt tolerance of eight Egyptian cotton varieties. Part II. At the seedling stage. Z. Acker-und Pflanzenbau 133:308-314.

    Google Scholar 

  • Ferreira, L.G.R. and M.A.A. Reboucas. 1992. Influence of hydration dehydration on cotton seeds on overcoming the effects of salinity on germination. Pesquisa Agropecuaria Brasileira 27:609-615.

    Google Scholar 

  • Francois, L.E. 1982. Narrow row cotton (Gossypium hirsutum L.) under saline conditions. Irrig. Sci. 3:149-156.

    Article  Google Scholar 

  • Gabr, A.I. and S.A. El-Ashkar. 1977. The effect of different combinations of soil salinity and CCC on dry matter accumulation and yield of cotton plants. Biol. Plant. 19:391-393.

    Article  CAS  Google Scholar 

  • Gadallah, M.A.A. 1995. Effect of water stress, abscisic acid, and proline on cotton plants. J. Arid Environ. 30:315-325.

    Article  Google Scholar 

  • Gerard, C.J. and E. Hinojosa. 1973. Cell wall properties of cotton roots as influenced by calcium and salinity. Agron. J. 65:556-560.

    Article  Google Scholar 

  • Gorham, J. 1996a. Mechanisms of salt tolerance of halophytes. In: R. Choukr-Allah, C.V. Malcolm, and A. Hamdy (eds.). Halophytes and Biosaline Agriculture. Marcel Dekker, New York. pp. 31-53.

    Google Scholar 

  • Gorham, J. 1996b. Glycine betaine is a major nitrogen-containing solute in the Malvaceae. Phytochemistry, 43:367-369.

    Article  CAS  Google Scholar 

  • Gorham, J. and J. Bridges. 1995. Effects of calcium on growth and leaf ion concentrations of Gossypium hirsutum grown in saline hydroponic culture. Plant and Soil 176:219-227.

    Article  CAS  Google Scholar 

  • Grattan, S.R. and C.M. Grieve. 1992. Mineral element acquisition and growth response of plants grown in saline environments. Agriculture, Ecosystems and Environ. 38:275-300.

    Article  CAS  Google Scholar 

  • Hoffman, G.J. and C.J. Phene. 1971. Effect of constant salinity levels on water-use efficiency of bean and cotton. Trans. Amer. Soc. Agric. Eng. 14:1103-1106.

    Google Scholar 

  • Ibrahim, A.A. 1984. Effect of GA3 and boron on growth, yield and accumulation of Na, K, and Cl in cotton grown under saline conditions. Ann. Agric. Sci. Moshtohor 21:519-531.

    Google Scholar 

  • Ivleva, L.B. and L.S. Plekhanova. 1992. Influence of salinity on cation-stimulated ATPase activity of the cotton root cell plasmalemma. Fiziologiya i Biokhimiya Kul’turnykh Rastenii 24:499-503.

    CAS  Google Scholar 

  • Ivonvina, L.N. and T.P. Ladonina. 1976. Pathways of radial transport of salts in cotton roots. Biologiya Zhivotnykh I Rastenii Turkmenistana 1976:76-79. (Russian).

    Google Scholar 

  • Jafri, A.Z. and R. Ahmad. 1994. Plant growth and ionic distribution in cotton (Gossypium hirsutum L.) under saline environment. Pakistan J. Bot. 26:105-114.

    Google Scholar 

  • Jafri, A.Z. and R. Ahmad. 1995. Effect of soil salinity on leaf development, stomatal size, and its distribution in cotton (Gossypium hirsutum L.). Pakistan J. Bot. 27:297-303.

    Google Scholar 

  • Jalaluddin, M. 1993. Effect of VAM fungus (Glomus intraradices) on the growth of sorghum, maize, cotton and Pennisetum under salt stress. Pakistan J. Bot. 25:215-218.

    Google Scholar 

  • Joham, H.E. 1986. Effects of nutrient elements on fruiting efficiency. In: J.R. Mauney and J. McD. Stewart (eds.). Cotton Physiology, Book 1. The Cotton Foundation, Memphis, pp. 79-89.

    Google Scholar 

  • Kent, L.M. and A. Läuchli. 1985. Germination and seedling growth of cotton: Salinity-calcium interactions. Plant, Cell Environ. 8:155-159.

    Article  CAS  Google Scholar 

  • Keren, R. and I. Shainberg. 1978. Irrigation with sodic and brackish water and its effect on the soil and on cotton fields. Harrade 58:963-976.

    Google Scholar 

  • Khaddar, V.K. and N. Ray. 1988. The principles and perspective of paddy cotton intercrop**. Advancement of crops and monitoring of environment. Progress in Ecology 10:403-418.

    Google Scholar 

  • Kijne, J.W. 1998. Yield response to moderately saline irrigation water: Implications for feasibility of management changes in irrigation systems for salinity control. Z. Bewasserungswirtschaft 33:261-277.

    Google Scholar 

  • Knapp, K.C. 1992. Irrigation management and investment under saline, limited drainage conditions. 2. Characterization of optimal decision rules. Water Resour. Res. 28:3091-3097.

    Article  Google Scholar 

  • Lashin, M.H. and M. Atanasiu. 1972. Studies on the effect of salt concentrations on the formation of dry matter, uptake of mineral nutrients, and mineral composition of cotton plants during the vegetative growth period. Z. Acker- und Pflanzenbau 135:178-186.

    CAS  Google Scholar 

  • Läuchli, A. 1999. Salinity-potassium interactions in crop plants. In: D.M. Oosterhuis and G.A. Berkowitz (eds.). Frontiers in Potassium Nutrition: New Perspectives on the Effects of Potassium on Physiology of Plants. Potash & Phosphate Institute, Norcross, GA pp. 71-76.

    Google Scholar 

  • Läuchli, A. and W. Stelter. 1982. Salt tolerance of cotton genotypes in relation to K/Na-selectivity. In: A. San Pietro (ed.). Biosaline Research. Plenum Press, New York. pp. 511-514.

    Google Scholar 

  • Leidi, E.O. and J.F. Saiz. 1997. Is salinity tolerance related to Na accumulation in upland cotton (Gossypium hirsutum) seedlings? Plant Soil 190:67-75.

    Article  CAS  Google Scholar 

  • Levintanus, A. 1992. Saving the Aral Sea. Int. J. Water Res. Develop. 8:60-64.

    Article  Google Scholar 

  • Longenecker, D.E. 1973. The influence of soil salinity upon fruiting and shedding, boll characteristics, fibre quality, and yield of two cotton species. Soil Sci. 115:294-302.

    Article  CAS  Google Scholar 

  • Longenecker, D.E. 1974. The influence of high sodium in salts upon fruiting and shedding boll characteristics, fibre properties, and yield of two cotton species. Soil Sci. 118:387-396.

    Article  CAS  Google Scholar 

  • Longstreth, D.J. and P.S. Nobel. 1979a. Salinity effects on leaf anatomy. Plant Physiol. 63:700-703.

    Article  PubMed  CAS  Google Scholar 

  • Maas, E.V. 1985. Crop tolerance to saline sprinkling water. Plant and Soil 89:273-284.

    Article  Google Scholar 

  • Maas, E.V. 1990. Crop salt tolerance. In: K.J. Tanji (ed.). Agricultural Salinity Assessment and Management. American Society of Civil Engineers, New York. pp. 262-304.

    Google Scholar 

  • Malik, M.N. and M.I. Makhdum. 1987. Salinity tolerance of cotton cultivars (G. hirsutum L.) at germination. The Pakistan Cottons 31:171-174.

    Google Scholar 

  • Martinez, V. and A. Läuchli. 1991. Phosphorus translocation in salt-stressed cotton. Physiol. Plant. 83:627-632.

    Article  CAS  Google Scholar 

  • Martinez, V. and A. Läuchli. 1994. Salt-induced inhibition of phosphate uptake in plants of cotton. New Phytol. 125:609-614.

    Article  Google Scholar 

  • Mert, H.H. 1989. Photosynthesis and photorespiration in 2 cultivars of cotton under salt stress. Biol. Plant 31:413-414.

    Article  Google Scholar 

  • Mert, H.H. 1993. Investigation on the endogenous ABA levels of seeds of cotton cultivars under salt stress conditions. Doga, Turk Botanik Dergisi, 17:201-205. (Turkish).

    Google Scholar 

  • Micklin, P.P. 1988. Desiccation of the Aral Sea - A water management disaster in the Soviet Union. Science 241:1170-1175.

    Article  PubMed  CAS  Google Scholar 

  • Micklin, P.P. 1994. The Aral Sea problem. Proc. Inst. Civil Engineers - Civil Engineering 102:114-121.

    Google Scholar 

  • Minashina, N.G. 1996. Soil environmental changes and soil reclamation problems in the Aral Sea basin. Eurasian Soil Sci. 28:184-195.

    Google Scholar 

  • Muhammed, S.M.I. and Makhdum. 1973. Effect of soil salinity on the composition of oil and amino acids and on the oil content of sunflower seed. Pakistan J. Agric. Sci. 10:71-76.

    Google Scholar 

  • Mühling, K.H. and A. Läuchli, A. 2002. Determination of apoplastic Na in intact leaves of cotton by in vivo fluorescence ratio imaging. Functional Plant Biology 29:1491-1499.

    Article  Google Scholar 

  • Munk, D.S. and B. Roberts. 1995. Growth and development of Pima and Acala cotton on saline soils. Proc. Beltwide Cotton Conferences, San Antonio. 1995 1:90-92.

    Google Scholar 

  • Munk, D.S. and J. Wroble. 1995. Irrigation management for increased conjunctive use of a shallow saline water table. Proc. Beltwide Cotton Conf., San Antonio. 1995, 2:1372-1374.

    Google Scholar 

  • Munns, R. 1993. Physiological processes limiting plant growth in saline soils - Some dogmas and hypotheses. Plant Cell Environ. 16:15-24.

    Article  CAS  Google Scholar 

  • Munoz, S.C. 1994. Nutrient uptake and plant physiology enhancement by PHCA treatments on cotton plants. pp. 1360-1363 In: 1994 Proc. Beltwide Cotton Conferences, National Cotton Council of America, Memphis, Tenn.

    Google Scholar 

  • Muthuchamy, I. and K. Valliappan. 1993. Salt dynamics in the root zone. Madras Agric.J. 80:51-52.

    Google Scholar 

  • Nazirov, N.N. 1973. Lines for further development in the biology and breeding of cotton. Khlopkovodstvo 1973, 37-39. (Russian).

    Google Scholar 

  • Nieman, R.H. and L.L. Poulsen. 1967. Interactive effects of salinity and atmospheric humidity on the growth of bean and cotton plants. Bot. Gaz. 128:69-73.

    Article  Google Scholar 

  • Pearce, F. 1994. Neighbours sign deal to save Aral Sea. New Scientist 141:10.

    Google Scholar 

  • Pearce, F. 1995. Poisoned Waters. New Scientist 148:29-33.

    Google Scholar 

  • Pearson, G.A. 1960. Tolerance of crops to exchangeable sodium. USDA Inf. Bull. 216, Washington D.C.

    Google Scholar 

  • Pessarakli, M. 1995. Physiological responses of cotton (Gossypium hirsutum L.) to salt stress. In: M. Pessarakli (ed.). Handbook of Plant and Crop Physiology. Marcel Dekker, New York. pp. 679- 693.

    Google Scholar 

  • Pessarakli, M. and T.C. Tucker. 1985a. Uptake of nitrogen- 15 by cotton under salt stress. Soil Sci. Soc. Am. J. 49:149-152.

    Article  CAS  Google Scholar 

  • Pessarakli, M. and T.C. Tucker. 1985b. Ammonium (15 N) metabolism in cotton under salt stress. J. Plant Nutr. 8:1025-1045.

    Article  CAS  Google Scholar 

  • Plaut, Z. 1989. Response to photosynthesis to water and salt stress - similarities and dissimilarities. In: K.H. Kreeb, R.M. Richter, and T.M. Hinckley (eds.). Structural and functional responses to enirionmental stresses: water shortage. SPB Academic Publishing., The Hague. pp. 155-163.

    Google Scholar 

  • Plaut, Z. and E. Federman. 1991. Acclimation of CO2 assimilation in cotton leaves to water stress and salinity. Plant Physiol. 97:515-522.

    Article  PubMed  CAS  Google Scholar 

  • Precoda, N. 1991. Requiem for the Aral Sea. Ambio 20:109-114.

    Google Scholar 

  • Qadir, M. and M. Shams. 1997. Some agronomic and physiological aspects of salt tolerance in cotton (Gossypium hirsutum L.). J. Agron. Crop Sci. 179:101-106.

    Article  Google Scholar 

  • Rathert, G. 1982a. Influence of extreme K/Na ratios and high substrate salinity on plant metabolism of crops differing in salt tolerance. 6. Mineral distribution variability among different salt tolerant cotton varieties. J. Plant Nutr. 5:183-193.

    Article  CAS  Google Scholar 

  • Rathert, G. 1982b. Influence of extreme K/Na ratios and high substrate salinity on plant metabolism of crops differing in salt tolerance. 7. Relations between carbohydrates and degradative enzymes in salt tolerant and salt sensitive cotton genotypes during initial salinity stress. J. Plant Nutr. 5:1401-1413.

    Article  CAS  Google Scholar 

  • Rathert, G. 1983. Effects of high salinity stress on mineral and carbohydrate metabolism of two cotton varieties. Plant and Soil. 73:247-256.

    Article  CAS  Google Scholar 

  • Ray, N. and V.K. Khaddar. 1983. Formation of adventitious and floating roots in cotton under waterlogged conditions. Current Sci. 52:826-828.

    Google Scholar 

  • Ray, N. and V.K. Khaddar. 1993. Effect of water stagnation at various growth stages of cotton plants grown under salt affected soil conditions. Adv. Plant Sci. 6:125-136.

    Google Scholar 

  • Razzouk, S. and W.J. Whittington. 1991. Effects of salinity on cotton yield and quality. Field Crops Res. 26:305-314.

    Article  Google Scholar 

  • Rehab, F.I. and A. Wallace. 1979. Sodium chloride on growth, mineral composition, and gas exchange characteristics of three cultivars of cotton grown in soil in a glasshouse. Alexandria J. Agric. Res. 27:237-245.

    CAS  Google Scholar 

  • Reinhardt, D.H. and T.L. Rost. 1995a. Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ. Exp. Bot. 35:563-574.

    Article  CAS  Google Scholar 

  • Reinhardt, D.H. and T.L. Rost. 1995b. On the correlation of primary root growth and tracheary element size and distance from the tip in cotton seedlings grown under salinity. Environ. Exp. Bot. 35:575-588.

    Article  Google Scholar 

  • Reinhardt, D.H. and T.L. Rost. 1995c. Primary and lateral root development of dark-grown and light-grown cotton seedlings under salinity stress. Botanica Acta 108:457-465.

    Google Scholar 

  • Reinhardt, D.H. and T.L. Rost. 1995d. Developmental changes of cotton root primary tissues induced by salinity. Int. J. Plant Sci. 156:505-513.

    Article  Google Scholar 

  • Rhoades, J.D. 1987. Use of saline water for irrigation. Water Quality Bulletin 12:14-20.

    CAS  Google Scholar 

  • Rodriguez-Navarro, A. 2000. Potassium transport in fungi and plants. Bioch. Biophy. Acta 1469:1-30.

    CAS  Google Scholar 

  • Russo, D. and D. Bakker. 1987. Crop water production functions for sweet corn and cotton irrigated with saline waters. Soil Sci. Soc. Am. J. 51:1554-1562.

    Article  Google Scholar 

  • Saden, D. 1992. Irrigation of field crops with saline and sodic water. Water Irrig. Rev. 12:4-6.

    Google Scholar 

  • Salih, H.M. and R.K. Abdul-Halim. 1985. Effects of levels of two dominant salt types in Iraq on some components of cotton yield (Gossypium hirsutum L.). J. Agric. Water Resour. Res. 4:1-14.

    Google Scholar 

  • Sexton, P.D. and C.J. Gerard. 1982. Emergence force of cotton seedlings as influenced by salinity. Agron. J. 74:699-702.

    Article  Google Scholar 

  • Shalhevet, J. 1993. Plants under salt and water stress. In: L. Fowden, T. Mansfield, and J. Stoddart (eds.). Plant Adaptation to Environmental Stress. Chapman and Hall, London. pp. 133-154.

    Google Scholar 

  • Shalhevet, J. and T.C. Hsiao. 1986. Salinity and drought. A comparison of their effects on osmotic adjustment, assimilation, transpiration and growth. Irrig. Sci. 7:249-264.

    Article  CAS  Google Scholar 

  • Shannon, M.C. and L.E. Francois. 1977. Influence of seed pretreatments on salt tolerance of cotton during germination. Agron. J. 69:619-622.

    Article  CAS  Google Scholar 

  • Shimose, N. and J. Sekiya. 1991. Salt tolerance of higher plants and uptake of inorganic nutrients. Sci. Rep. Faculty of Agriculture, Okayama University 77:21-29.

    CAS  Google Scholar 

  • Silberbush, M. and J. Ben-Asher. 1987. The effect of salinity on parameters of potassium and nitrate uptake of cotton. Communications in Soil Sci. and Plant Anal. 18:65-81.

    Article  CAS  Google Scholar 

  • Singh, R. and J. Singh. 1996. Irrigation planning in cotton through simulation modelling. Irrig. Sci. 17:31- 36.

    Article  Google Scholar 

  • Slama, F. 1991. Transport of Na+ in leaves and sensitivity of plants to NaCl. Assessment of a trap effect at the level of the stems. Agronomie 11:275-281.

    Article  Google Scholar 

  • Spoor, M. 1998. The Aral Sea Basin crisis: Transition and environment in former Soviet Central Asia. Development and Change 29:409-435.

    Article  Google Scholar 

  • Stark, C. 1991. Osmotic adjustment and growth of saltstressed cotton as improved by a bioregulator. J. Agron. Crop Sci. 167:326-334.

    Article  CAS  Google Scholar 

  • Stark, C. and R. Schmidt. 1991. Behaviour of 22Na in salt-stressed crops as affected by the growth regulator MCBuTTB. Beitrage zur Tropischen Landwirtschaft und Veterinarmedizin 29:435-443.

    CAS  Google Scholar 

  • Strogonov, B.P. 1964. Physiological Basis of Salt Tolerance in Plants. I.P.S.T. Jerusalem O.L. Bourne Press, London.

    Google Scholar 

  • Szabolcs, I. 1989. Salt-affected soils. CRC Press Inc., Boca Raton, Florida.

    Google Scholar 

  • Tanji, K.K. 1990. Nature and extent of agricultural salinity. In: K.K. Tanji (ed.). Agricultural Salinity Assessment and Management. Amer. Soc. Civil Engineers, New York, pp. 1-17.

    Google Scholar 

  • Thomas, J.R. 1980. Osmotic and specific salt effects on growth of cotton. Agron. J. 72:407-412.

    Article  CAS  Google Scholar 

  • Tiwari, R.J. 1994. Response of gypsum on morpho-physiochemical properties of cotton cultivars under salt affected vertisols of Madhya Pradesh. Crop Res. Hisar 7:197-200.

    Google Scholar 

  • Tort, N. 1996. Effects of light, different growth media, temperature, and salt concentrations on germination of cotton seeds (Gossypium hirsutum L. cv. Naxilli- 87). J. Agron. Crop Sci. 176:217-221.

    Article  CAS  Google Scholar 

  • Twersky, M. and D. Pasternak. 1972. Utilization of saline water for irrigation of salt tolerant crops. Negev Institute for Arid Zone Research: Israel, Report for 1971-1972, 61-62.

    Google Scholar 

  • Uma, M.S. and B.C. Patil. 1996. Inter species variation in the performance of cotton under soil salinity stress. Karnataka J. Agric. Sci. 9:73-77.

    Google Scholar 

  • Van Atta, D. 1993. The current state of agrarian reform in Uzbekistan. Post-Soviet Geography 34:598-606.

    Google Scholar 

  • Wilcox, L.V. 1960. Boron injury to plants. USDA Inf. Bull. 211., Washington D.C.

    Google Scholar 

  • Ye, W.W. and J.D. Liu. 1994. The effect of NaCl and table salt on the germination of cotton seed. China Cottons 21:14-15.

    Google Scholar 

  • Zhong, H. and A. Läuchli. 1988. Incorporation of [14C]glucose into cell wall polysaccharides of cotton roots: Effects of NaCl and CaCl2. Plant Physiol. 88:511-514.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, H. and A. Läuchli. 1993a. Spatial and temporal aspects of growth in the primary root of cotton seedlings: Effects of NaCl and CaCl2. J. Exp. Bot. 44:763-771.

    Article  CAS  Google Scholar 

  • Zhong, H. and A. Läuchli. 1993b. Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. J. Exp. Bot. 44:773-778.

    Article  CAS  Google Scholar 

  • Zhong, H. and A. Läuchli. 1994. Spatial distribution of solutes, K, Na, Ca and their deposition rates in the growth zone of primary cotton roots: Effects of NaCl and CaCl2. Planta 194:34-41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gorham, J., Läuchli, A., Leidi, E.O. (2010). Plant Responses to Salinity. In: Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R. (eds) Physiology of Cotton. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3195-2_13

Download citation

Publish with us

Policies and ethics

Navigation