Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

One of the greatest and most enduring of intellectual quests is that of self understanding. What we understand and the intellectual models that we manipulate in the process of applying that understanding are intimately related to what we perceive of the world. Our perceptions are in turn related to the structure of our sense organs and to the brain itself. The neurosciences represent a rapidly growing body of knowledge and ideas about the marvelous machinery of the brain1 and are making an increasingly important contribution to this process. There is now a considerable understanding of the basic operation of the five senses of extero-reception: vision, hearing, touch, taste and smell. Our perception of our environment necessarily involves these five senses together with the senses of balance and body position (proprioception). The richness of our perception is clearly heightened by the complex combinations of these senses. For example, the successful restaurant generates a sensual experience that goes well beyond the simple satiation of hunger. The lighting and furnishings generate a mood that is relaxed and comfortable, the smells relate to the food and the conversation of other diners is muted and combines with the background music to generate a sense of communion and yet privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gazzaniga MS. The congitive neurosciences. Cambridge, Mass.: MIT Press, 1994.

    Google Scholar 

  2. Yost WA. Auditory image perception and analysis: the basis for hearing. Hear Res 1991; 56: 8–18.

    Article  PubMed  CAS  Google Scholar 

  3. Masterton RB. Role of the central auditory system in hearing: the new direction. TINS 1992; 15: 280–285.

    PubMed  CAS  Google Scholar 

  4. Blauen J. Spatial Hearing: The psychophysics of human sound localization. Cambridge, Mass.: MIT Press, 1983.

    Google Scholar 

  5. Blauert J, Lindermann W. Auditory spaciousness: Some further psycho-acoustic analyses. J Acoust Soc Am 1986; 80: 533–542.

    Article  PubMed  CAS  Google Scholar 

  6. Dye RH, Yost WA, Stellmack MA et al. Stimulus classification procedure for assessing the extent to which binaural processing is spectrally analytic or synthetic. J Acoust Soc Am 1994; 96: 2720–2730.

    Article  PubMed  Google Scholar 

  7. Wightman FL, Kistler DJ. Headphone simulation of free field listening. II: Psychophysical validation. J Acoust Soc Am 1989; 85: 868–878.

    Article  PubMed  CAS  Google Scholar 

  8. Wenzel EM, Arruda M, Kistler DJ et al. Localization using non-individualized head-related transfer functions. J Acoust Soc Am 1993; 94: 111–123.

    Article  PubMed  CAS  Google Scholar 

  9. Makous J, Middlebrooks JC. Two-dimensional sound localization by human listeners. J Acoust Soc Am 1990; 87: 2188–2200.

    Article  PubMed  CAS  Google Scholar 

  10. Carlile S, Leong P, Hyams S et al. Distribution of errors in auditory localization. Proceedings of the Australian Neuroscience Society 1996; 7: 2–25.

    Google Scholar 

  11. Erulkar SD. Comparitive aspects of spatial localization of sound. Physiol Rev 1972; 52: 238–360.

    Google Scholar 

  12. Oldfield SR, Parker SPA. Acuity of sound localization: a topography of auditory space I. Normal hearing conditions. Percept 1984; 13: 581–600.

    Article  CAS  Google Scholar 

  13. Mills AW. On the minimum audible angle. J Acoust Soc Am 1958; 30: 237–246.

    Article  Google Scholar 

  14. Hartman WM, Rakerd B. On the minimum audible angle-A decision theory approach. J Acoust Soc Am 1989; 85: 2031–2041.

    Article  Google Scholar 

  15. Middlebrooks JC, Green DM. Sound localization by human listeners. Annu Rev Psychol 1991; 42: 135–159.

    Article  PubMed  CAS  Google Scholar 

  16. Wightman FL, Kistler DJ. Sound localization. In: Yost WA, Popper AN, Fay RR, ed. Human psychophysics. New York: Springer-Verlag, 1993: 155–192.

    Chapter  Google Scholar 

  17. Yost WA, Gourevitch G. Directional hearing. New York: Springer-Verlag, 1987.

    Book  Google Scholar 

  18. Blauert J. Binaural localization. Scand Audiol 1982; Supp1. 15: 7–26.

    Google Scholar 

  19. Oldfield SR, Parker SPA. Acuity of sound localization: a topography of auditory space II: Pinna cues absent. Percep 1984; 13: 601–617.

    Article  CAS  Google Scholar 

  20. Oldfield SR, Parker SPA. Acuity of sound localization: a topography of auditory space. III Monaural hearing conditions. Percep 1986; 15: 67–81.

    Article  CAS  Google Scholar 

  21. Wightman FL, Kistler DJ, Perkins ME. A new approach to the study of human sound localization. In: Yost WA, Gourevitch G, ed. Directional Hearing. New York: Academic, 1987: 26–48.

    Chapter  Google Scholar 

  22. Middlebrooks JC. Narrow-band sound localization related to external ear acoustics. J Acoust Soc Am 1992; 92: 2607–2624.

    Article  PubMed  CAS  Google Scholar 

  23. Carlile S, Pralong D. Validation of high-fidelity virtual auditory space. Br J Audiology 1996; (abstract in press).

    Google Scholar 

  24. Perrett S, Noble W. Available response choices affect localization of sound. Percept and Psychophys 1995; 57: 150–158.

    Article  CAS  Google Scholar 

  25. Makous JC, O’Neill WE. Directional sensitivity of the auditory midbrain in the mustached bat to free-field tones. Hear Res 1986; 24: 73–88.

    Article  PubMed  CAS  Google Scholar 

  26. Burger JF. Front-back discrimination of the hearing system. Acustica 1958; 8: 301–302.

    Google Scholar 

  27. Stevens SS, Newman EB. The localization of actual sources of sound. Amer J Psychol 1936; 48: 297–306.

    Article  Google Scholar 

  28. Butler RA. The bandwidth effect on monaural and binaural localization. Hear Res 1986; 21: 67–73.

    Article  PubMed  CAS  Google Scholar 

  29. Fisher HG, Freedman SJ. The role of the pinna in auditory localization. J Auditory Res 1968; 8: 15–26.

    Google Scholar 

  30. Musicant AD, Butler RA. The psychophysical basis of monaural localization. Hear Res 1984; 14: 185–190.

    Article  PubMed  CAS  Google Scholar 

  31. Searle CL, Braida LD, Davis M F et al. Model for auditory localization. J Acoust Soc Am 1976; 60: 1164–1175.

    Article  PubMed  CAS  Google Scholar 

  32. Searle CL, Braida LD, Cuddy D R et al. Binaural pinna disparity: another auditory localization cue. J Acoust Soc Am 1975; 57: 448–455.

    Article  PubMed  CAS  Google Scholar 

  33. Middlebrooks JC, Makous JC, Green DM. Directional sensitivity of sound-pressure levels in the human ear canal. J Acoust Soc Am 1989; 86: 89–108.

    Article  PubMed  CAS  Google Scholar 

  34. Pralong D, Carlile S. Measuring the human head-related transfer functions: A novel method for the construction and calibration of a miniature “in-ear” recording system. J Acoust Soc Am 1994; 95: 3435–3444.

    Article  PubMed  CAS  Google Scholar 

  35. Roffler SK, Butler RA. Factors that influence the localization of sound in the vertical plane. J Acoust Soc Am 1968; 43: 1255–1259.

    Article  PubMed  CAS  Google Scholar 

  36. Blauert J. Sound localization in the median plane. Acustica 1969–70; 22: 205–213.

    Google Scholar 

  37. Watkins AJ. Psychoacoustic aspects of synthesized vertical locale cues. J Acoust Soc Am 1978; 63: 1152–1165.

    Article  PubMed  CAS  Google Scholar 

  38. Batteau DW. The role of the pinna in human localization. Proc Royal Soc B 1967; 158: 158–180.

    Article  Google Scholar 

  39. Hebrank J, Wright D. Spectral cues used in the localization of sound sources on the medican plane. J Acoust Soc Am 1974; 56: 1829–1834.

    Article  PubMed  CAS  Google Scholar 

  40. Gardner MB, Gardner RS. Problems of localization in the median plane: effect of pinnae cavity occlusion. J Acoust Soc Am 1973; 53: 400–408.

    Article  PubMed  CAS  Google Scholar 

  41. Gardner MB. Some monaural and binaural facets of median plane localization. J Acoust Soc Am 1973; 54: 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  42. Angell JR, Fite W. The monaural localization of sound. Psychol Rev 1901; 8: 225–243.

    Article  Google Scholar 

  43. Butler RA, Naunton RF. The effect of stimulus sensation level on the directional hearing of unilaterally deafened persons. J Aud Res 1967; 7: 15–23.

    Google Scholar 

  44. Belendiuk K, Butler RD. Monaural location of low-pass noise bands in the horizontal plane. J Acoust Soc Am 1975; 58: 701–705.

    Article  PubMed  CAS  Google Scholar 

  45. Humanski RA, Butler RA. The contribution of the near and far ear toward localization of sound in the sagittal plane. J Acoust Soc Am 1988; 83: 2300–2310.

    Article  PubMed  CAS  Google Scholar 

  46. Butler RA. An analysis of the monaural displacement of sound in space. Percept and Psychophys 1987; 41: 1–7.

    Article  CAS  Google Scholar 

  47. Butler RA, Humanski RA, Musicant AD. Binaural and monaural localization of sound in two-dimensional space. Percept 1990; 19: 241–256.

    Article  CAS  Google Scholar 

  48. Slattery WH, Middlebrooks JC. Monaural sound localization: acute versus chronic unilateral impairment. Hear Res 1994; 75: 38–46.

    Article  PubMed  Google Scholar 

  49. Newton VE. Sound localisation in children with a severe unilateral hearing loss. Audiol 1983; 22: 189–198.

    Article  CAS  Google Scholar 

  50. Musicant AD, Butler RA. Monaural localization: An analysis of practice effects. Percept and Psychophys 1980; 28: 236–240.

    Article  CAS  Google Scholar 

  51. Musicant AD, Butler RA. Monaural localization following exposure to different segments of acoustic space. Percept and Psychophys 1982; 31: 353–357.

    Article  CAS  Google Scholar 

  52. Butler RL, Humanski RA. Localization of sound in the vertical plane with and without high-frequency spectral cues. Percept and Psychophys 1992; 51: 182–186.

    Article  CAS  Google Scholar 

  53. Wallach H. The role of head movements and vestibular and visual cues in sound localization. J Exp Psych 1940; 27: 339–368.

    Article  Google Scholar 

  54. Lambert RM. Dynamic theory of sound-source localization. J Acoust Soc Am 1974; 56: 165–171.

    Article  PubMed  CAS  Google Scholar 

  55. Thurlow WR, Mangels JW, Runge PS. Head movements during sound localization. J Acoust Soc Am 1967; 42: 489–493.

    Article  PubMed  CAS  Google Scholar 

  56. Perrott DR, Ambarsoom H, Tucker J. Changes in head position as a measure of auditory localization performance: Auditory psychomotor coordination under monaural and binaural listening conditions. J Acoust Soc Am 1987; 82: 1637–1645.

    Article  PubMed  CAS  Google Scholar 

  57. Thurlow WR, Runge PS. Effect of induced head movements on localization of direction of sounds. J Acoust Soc Am 1967; 42: 480–488.

    Article  PubMed  CAS  Google Scholar 

  58. Thurlow WR, Mergener JR. Effect of stimulus duration on localization of direction of noise stimuli. J Speech and Hear Res 1970; 13: 826–838.

    CAS  Google Scholar 

  59. Pollack I, Rose M. Effect of head movement on the localization of sounds in the equatorial plane. Percept and Psychophys 1967; 2: 591–596.

    Article  Google Scholar 

  60. Altman JA, Viskov OV. Discrimination of perceived movement velocity for fused auditory image in dichotic stimulation. J Acoust Soc Am 1977; 61: 816–819.

    Article  PubMed  CAS  Google Scholar 

  61. Grantham DW, Wightman FL. Auditory motion aftereffects. Percept and Psychophys 1979; 26: 403–408.

    Article  CAS  Google Scholar 

  62. Grantham DW. Detection and discrimination of simulated motion of auditory targets in the horizotal plane. J Acoust Soc Am 1986; 79: 1939–1949.

    Article  PubMed  CAS  Google Scholar 

  63. Grantham DW. Motion aftereffects with horizontally moving sound sources in the free field. Percept and Psychophys 1989; 45: 129–136.

    Article  CAS  Google Scholar 

  64. Saberi K, Perrott DR. Minimum audible movement angles as a function of sound source trajectory. J Acoust Soc Am 1990; 88: 2639–2644.

    Article  PubMed  CAS  Google Scholar 

  65. Perrott DR, Costantino B, Ball J. Discrimination of moving events which accelerate or decelerate over the listening interval. J Acoust Soc Am 1993; 93: 1053–1057.

    Article  PubMed  CAS  Google Scholar 

  66. Wightman FL, Kistler DJ. The dominant role of low-frequency interaural time differences in sound localization. J Acoust Soc Am 1992; 91: 1648–1661.

    Article  PubMed  CAS  Google Scholar 

  67. Harris JD, Sergeant RL. Monaural/binaural minimum audible angles for a moving sound source. J Speech and Hear Res 1971; 14: 618–629.

    CAS  Google Scholar 

  68. Perrott DR, Musicant AD. Minimum audible movement angle: Binaural localization of moving sound sources. J Acoust Soc Am 1977; 62: 1463–1466.

    Article  PubMed  CAS  Google Scholar 

  69. Perrott DR, Tucker J. Minimum audible movement angle as a function of signal frequency and the velocity of the source. J Acoust Soc Am 1988; 83: 1522–1527.

    Article  PubMed  CAS  Google Scholar 

  70. Perrott DR, Marlborough K. Minimum audible movement angle: Marking the end points of the path traveled by a moving sound source. J Acoust Soc Am 1989; 85: 1773–1775.

    Article  PubMed  CAS  Google Scholar 

  71. Carlile S, King AJ. From outer ear to virtual space. Cur Biol 1993; 3: 446–448.

    Article  CAS  Google Scholar 

  72. Fisher NI, Lewis T, Embleton BJJ. Statistical analysis of spherical data. Cambridge: Cambridge University Press, 1987.

    Book  Google Scholar 

  73. Shaw EAG. The external ear. In: Keidel WD, Neff WD, ed. Handbook of Sensory physiology. Berlin: Springer-Verlag, 1974: 455–490.

    Google Scholar 

  74. Barlow HB. Why have multiple cortical areas? Vision Research 1986; 26: 81–90.

    Article  PubMed  CAS  Google Scholar 

  75. Blakemore C. Understanding images in the brain. In: Barlow H, Blakemore C, Weston-Smith M, eds. Images and Understanding. Cambridge: Cambridge University Press, 1990: 257–283.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carlile, S. (1996). Auditory Space. In: Virtual Auditory Space: Generation and Applications. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22594-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22594-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22596-7

  • Online ISBN: 978-3-662-22594-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation