Sound Localization

  • Chapter
Human Psychophysics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 3))

Abstract

Sounds in the environment can alert, educate, entertain, or just annoy us. The information conveyed by sounds consists of time-varying streams or patterns of auditory attributes such as loudness, duration, pitch, and timbre. Extracting this information requires decoding the patterns in order to determine, for example, which attributes belong to which sound-producing objects. An important component of this source segregation process is the apparent spatial position of each object, its direction, and its distance from the listener. “Sound localization” is the term normally used to refer to the processes by which the apparent position of an object is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Angell JR, Fite W (1901) The monaural localization of sound. Psych Rev 8:225–246.

    Article  Google Scholar 

  • Batteau DW (1967) The role of the pinna in human localization. Proc R Soc London Ser B 168:158–180.

    Article  CAS  Google Scholar 

  • Belendiuk K, Butler RA (1975) Monaural localization of low-pass noise bands in the horizontal plane. J Acoust Soc Am 58:701–705.

    Article  PubMed  CAS  Google Scholar 

  • Belendiuk K, Butler RA (1978) Directional hearing under progressive impoverishment of binaural cues. Sensory Processes 2:58–70.

    PubMed  CAS  Google Scholar 

  • Bernstein LR, Trahiotis C (1985) Lateralization of sinusoidally amplitude-modulated tones: Effects of spectral locus and temporal variation. J Acoust Soc Am 78:514–523.

    Article  PubMed  CAS  Google Scholar 

  • Blauert J (1969) Sound localization in the median plane. Acustica 22:205–213.

    Google Scholar 

  • Blauert J.(1971) Localization and the law of the first wavefront in the median plane. J Acoust Soc Am 50:466–470.

    Article  PubMed  CAS  Google Scholar 

  • Blauert J (1982) Binaural localization: Multiple images and applications in Room- and electroacoustics. In: Gatehouse WR (ed) Localization of Sound: Theory and Applications. Groton, CN: Amphora Press, pp. 65–84.

    Google Scholar 

  • Blauert J (1983) Spatial Hearing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bloom PJ (1977) Creating source elevation illusions by spectral manipulation. J Audio Eng Soc 25:560–565.

    Google Scholar 

  • Burkhard MD, Sachs RM (1975) Anthropometric manikin for acoustic research. J Acoust Soc Am 58:214–222.

    Article  PubMed  CAS  Google Scholar 

  • Butler RA (1969) On the relative usefulness of monaural and binaural cues in locating sound in space. Psychon Sci 17:245–246.

    Google Scholar 

  • Butler RA (1975) The influence of the external and middle ear on auditory discriminations. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology. Berlin: Springer-Verlag, pp. 247–260.

    Google Scholar 

  • Butler RA (1986) The bandwidth effect on monaural and binaural localization. Hear Res 21:67–73.

    Article  PubMed  CAS  Google Scholar 

  • Butler RA, Belendiuk K (1977) Spectral cues utilized in the localization of sound in the median sagittal plane. J Acoust Soc Am 61:1264–1269.

    Article  PubMed  CAS  Google Scholar 

  • Butler RA, Flannery R (1980) The spatial attributes of stimulus frequency and their role in monaural localization of sound in the horizontal plane. Percept Psychophys 28:449–457.

    Article  PubMed  CAS  Google Scholar 

  • Butler RA, Humanski RA (1992) Localization of sound in the vertical plane with and without high-frequency spectral cues. Percept Psychophys 51:182–186.

    Article  PubMed  CAS  Google Scholar 

  • Butler RA, Planert N (1976) The influence of stimulus bandwidth on localization of sound in space. Percept Psychophys 19:103–108.

    Article  Google Scholar 

  • Butler RA, Humanski RA, Musicant AD (1990) Binaural and monaural localization of sound in two-dimensional space. Perception 19:241–256.

    Article  PubMed  CAS  Google Scholar 

  • Colburn HS (1973) Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. J Acoust Soc Am 54:1458–1470.

    Article  PubMed  CAS  Google Scholar 

  • Coleman PD (1962) Failure to localize the source distance of an unfamiliar sound. J Acoust Soc Am 34:345–346.

    Article  Google Scholar 

  • Durlach NI, Colburn HS (1978) Binaural Phenomena. In: Carterette EC, Friedman MP (eds) Handbook of Perception, Volume IV—Hearing. New York: Academic Press, pp. 365–466.

    Google Scholar 

  • Feddersen WE, Sandel TT, Teas DC, Jeffress LA (1957) Localization of high-frequency tones. J Acoust Soc Am 29:988–991.

    Article  Google Scholar 

  • Firestone FA (1930) The phase difference and amplitude ratio at the ears due to a source of pure tones. J Acoust Soc Am 2:260–270.

    Article  Google Scholar 

  • Fisher HG, Freedman SJ (1968) The role of the pinna in auditory localization. J Aud Res 8:15–26.

    Google Scholar 

  • Gardner MB (1969) Distance estimation of 0° or apparent 0°-oriented speech signals in anechoic space. J Acoust Soc Am 45:47–53.

    Article  PubMed  CAS  Google Scholar 

  • Gardner MB, Gardner RS (1973) Problem of localization in the median plane: Effect of pinnae cavity occlusion. J Acoust Soc Am 53:400–408.

    Article  PubMed  CAS  Google Scholar 

  • Grantham DW (1986) Detection and discrimination of simulated motion of auditory targets in the horizontal plane. J Acoust Soc Am 79:1939–1949.

    Article  PubMed  CAS  Google Scholar 

  • Green DM (1971) Temporal auditory acuity. Psych Rev 78:540–551.

    Article  CAS  Google Scholar 

  • Green DM (1976) An Introduction to Hearing. New York: John Wiley and Sons.

    Google Scholar 

  • Hartmann WM (1983) Localization of sound in rooms. J Acoust Soc Am 74:1380–1391.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann WM, Rakerd B (1989a) On the minimum audible angle—A decision theory approach. J Acoust Soc Am 85:2031–2041.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann WM, Rakerd B (1989b) Localization of sound in rooms. IV: The Franssen effect. J Acoust Soc Am 86:1366–1373.

    Article  PubMed  CAS  Google Scholar 

  • Hebrank JH, Wright D (1974a) Are two ears necessary for localization of sound sources on the median plane? J Acoust Soc Am 56:935–938.

    Article  PubMed  CAS  Google Scholar 

  • Hebrank JH, Wright D (1974b) Spectral cues used in the localization of sound sources on the median plane. J Acoust Soc Am 56:1829–1834.

    Article  PubMed  CAS  Google Scholar 

  • Jackson CV (1953) Visual factors in auditory localization. Quart J Exp Psych V: 52–65.

    Article  Google Scholar 

  • Joris PX, Yin TCT (1992) Responses to Amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91:215–232.

    Article  PubMed  CAS  Google Scholar 

  • Kistler DJ, Wightman FL (1992) A model of head-related transfer functions based on principal components analysis and minimum-phase reconstruction. J Acoust Soc Am 91:1637–1647.

    Article  PubMed  CAS  Google Scholar 

  • Klumpp R, Eady H (1956) Some measurements of interaural time differences thresholds. J Acoust Soc Am 28:859–864.

    Article  Google Scholar 

  • Kuhn GF (1977) Model for the interaural time differences in the azimuthal plane. J Acoust Soc Am 62:157–167.

    Article  Google Scholar 

  • Kuhn GF (1987) Physical Acoustics and Measurements Pertaining to Directional Hearing. In: Yost WA, Gourevitch G (eds) Directional Hearing. New York: Springer-Verlag, pp. 3–25.

    Google Scholar 

  • Lindemann W (1986) Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization for stationary signals. J Acoust Soc Am 80:1608–1622.

    Article  PubMed  CAS  Google Scholar 

  • Makous JC, Middlebrooks JC (1990) Two-dimensional sound localization by human listeners. J Acoust Soc Am 87:2188–2200.

    Article  PubMed  CAS  Google Scholar 

  • Mehrgardt S, Meliert V (1977) Transformation characteristics of the external human ear. J Acoust Soc Am 61:1567–1576.

    Article  PubMed  CAS  Google Scholar 

  • Meliert V, Siebrasse KF, Mehrgardt S (1974) Determination of the transfer function of the external ear by an impulse response measurement. J Acoust Soc Am 56: 1913–1915.

    Article  Google Scholar 

  • Middlebrooks JC (1992) Narrowband sound localization related to external ear acoustics. J Acoust Soc Am 92:2607–2624.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Green DM (1990) Directional dependence of interaural envelope delays. J Acoust Soc Am 87:2149–2162.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Ann Rev Psychol, 42:135–159.

    Article  CAS  Google Scholar 

  • Middlebrooks JC, Green DM (1992) Observations on a principal components analysis of head-related transfer functions. J Acoust Soc Am 92:597–599.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Makous JC, Green DM (1989) Directional sensitivity of sound-pressure levels in the human ear canal. J Acoust Soc Am 86:89–108.

    Article  PubMed  CAS  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246.

    Article  Google Scholar 

  • Mills AW (1960) Lateralization of high-frequency tones. J Acoust Soc Am 32:132–134.

    Article  Google Scholar 

  • Mills AW (1972) Auditory localization. In: Tobias JV (ed) Foundations of Modern Auditory Theory. New York, London: Academic Press, pp. 303–348.

    Google Scholar 

  • Musicant AD, Butler RA (1980) Monaural localization: An analysis of practice effects. Percept Psychophys 28:236–240.

    Article  PubMed  CAS  Google Scholar 

  • Musicant AD, Butler RA (1985) Influence of monaural spectral cues on binaural localization. J Acoust Soc Am 77:202–208.

    Article  PubMed  CAS  Google Scholar 

  • Neti C, Young ED, Schneider MH (1992) Neural network models of sound localization based on directional filtering by the pinna. J Acoust Soc Am 92:3140–3156.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield SR, Parker SPA (1984a) Acuity of sound localization: A topography of auditory space. I. Normal hearing conditions. Perception 13:581–600.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield SR, Parker SPA (1984b) Acuity of sound localization: A topography of auditory space. II. Pinna cues absent. Perception 13:601–617.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield SR, Parker SPA (1986) Acuity of sound localization: A topography of auditor space. III. Monaural hearing conditions. Perception 15:67–81.

    Article  PubMed  CAS  Google Scholar 

  • Parducci A (1963) Range-frequency compromise in judgment. Psychological Monographs, 77 No. 2:1–60.

    Google Scholar 

  • Perrott DR, Musicant AD (1977) Minimum auditory movement angle: Binaural localization of moving sound sources. J Acoust Soc Am 62:1463–1466.

    Article  PubMed  CAS  Google Scholar 

  • Pick HL, Warren DH, Hay JC (1969) Sensory conflict in judgments of spatial direction. Percept Psychophys 6:203–205.

    Article  Google Scholar 

  • Plenge G (1974) On the differences between localization and lateralization. J Acoust Soc Am 56:944–951.

    Article  PubMed  CAS  Google Scholar 

  • Pollack I, Rose M (1967) Effects of head movements on the localization of sounds in the equatorial plane. Percept Psychophys 2:591–596.

    Article  Google Scholar 

  • Pratt CC (1930) The spatial character of high and low tones. J Exp Psych 13:278–285.

    Article  Google Scholar 

  • Rakerd B, Hartmann, WM (1985) Localization of sound in rooms. II: The effects of a single reflecting surface. J Acoust Soc Am 78:524–533.

    Article  PubMed  CAS  Google Scholar 

  • Rakerd B, Hartmann WM (1986) Localization of sound in rooms. III: Onset and duration effects. J Acoust Soc Am 80:1695–1706.

    Article  PubMed  CAS  Google Scholar 

  • Roffler SK, Butler RA (1968) Factors that influence the localization of sound in the vertical plane. J Acoust Soc Am 43:1255–1259.

    Article  PubMed  CAS  Google Scholar 

  • Sandel TT, Teas DC, Feddersen WE, Jeffress LA (1955) Localization of sound from single and paired sources. J Acoust Soc Am 27:842–852.

    Article  Google Scholar 

  • Searle CL, Braida LD, Davis MF, Colburn HS (1976) Model for auditory localization. J Acoust Soc Am 60:1164–1175.

    Article  PubMed  CAS  Google Scholar 

  • Shaw EAG (1965) Ear canal pressure generated by a free sound field. J Acoust Soc Am 39:465–470.

    Article  Google Scholar 

  • Shaw EAG (1974) Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J Acoust Soc Am 56:1848–1861.

    Article  PubMed  CAS  Google Scholar 

  • Shaw EAG, Teranishi R (1968) Sound pressure generated in an external ear replica and real human ears by a nearby sound source. J Acoust Soc Am 44:240–249.

    Article  PubMed  CAS  Google Scholar 

  • Shelton BR, Searle CL (1980) The influence of vision on the absolute identification of sound-source position. Percept Psychophys 28:589–596.

    Article  PubMed  CAS  Google Scholar 

  • Stern RM, Colburn HS (1978) Theory of binaural interaction based on auditory-nerve data. IV. A model for subjective lateral position. J Acoust Soc Am 64:127–140.

    Article  PubMed  Google Scholar 

  • Stevens SS, Newman EB (1936) The localization of actual sources of sound. Am J Psych 48:297–306.

    Article  Google Scholar 

  • Strutt JW, Lord Rayleigh (1907) On our perception of sound direction. Philos Mag 13:214–232.

    Google Scholar 

  • Thompson SP (1882) On the function of the two ears in the perception of space. Philos Mag 13:406–416.

    Google Scholar 

  • Thurlow WR, Runge PS (1967) Effect of induced head movements on localization of direction of sounds. J Acoust Soc Am 42:480–488.

    Article  PubMed  CAS  Google Scholar 

  • Trahiotis C, Bernstein LR (1986) Lateralization of bands of noise and sinusoidally amplitude-modulated tones: Effects of spectral locus and bandwidth. J Acoust Soc Am 79:1950–1957.

    Article  PubMed  CAS  Google Scholar 

  • Trimble OT (1934) Localization of sound in the anterior-posterior and vertical dimensions of auditory space. Br J Psych 24:320–334.

    Google Scholar 

  • Wallach H (1939) On sound localization. J Acoust Soc Am 10:270–274.

    Article  Google Scholar 

  • Wallach H (1940) The role of head movements and vestibular and visual cues in sound localization. J Exp Psych 27:339–368.

    Article  Google Scholar 

  • Warren DH (1970) Intermodality interactions in spatial localization. In: Reitman W (ed) Cognitive Psychology. New York: Academic Press, pp. 114–133.

    Google Scholar 

  • Watkins AJ (1978) Psychoacoustical aspects of synthesized vertical locale cues. J Acoust Soc Am 63:1152–1165.

    Article  PubMed  CAS  Google Scholar 

  • Wenzel EM, Wightman FL, Kistler DJ, Foster SH (1988) Acoustic origins of individual differences in sound localization behavior. J Acoust Soc Am 84:S79.

    Article  Google Scholar 

  • Wenzel EM, Wightman FL, Kistler DJ (1991) Localization with non-individualized virtual acoustic display cues. In: Proceedings of CHI ‘91, ACM Conference on Computer-Human Interaction. New York: ACM Press, pp. 351–359.

    Google Scholar 

  • Wenzel EM, Arruda M, Kistler DJ, Wightman FL (1993) Localization using non-individualized head-related transfer functions. J Acoust Soc Am 94:111–123.

    Article  PubMed  CAS  Google Scholar 

  • Wiener FM (1947) On the diffraction of a progressive sound wave by the human head. J Acoust Soc Am 19:143–155.

    Article  Google Scholar 

  • Wiener FM, Ross DA (1946) The pressure distribution in the auditory canal in a progressive sound field. J Acoust Soc Am 18:401–408.

    Article  Google Scholar 

  • Wightman FL, Kistler DJ (1989a) Headphone simulation of free-field listening. I: Stimulus synthesis. J Acoust Soc Am 85:858–867.

    Article  PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ (1989b) Headphone simulation of free-field listening. II: Psychophysical validation. J Acoust Soc Am 85:868–878.

    Article  PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ (1992) The dominant role of low-frequency interaural time differences in sound localization. J Acoust Soc Am 91:1648–1661.

    Article  PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ, Arruda M (1991) Monaural localization, revisited. J Acoust Soc Am 89:1995.

    Article  Google Scholar 

  • Woodworth RS (1938) Experimental Psychology. New York: Holt,

    Google Scholar 

  • Yin TCT, Chan JCK (1988) Neural mechanisms underlying interaural time sensitivity to tones and noise. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: John Wiley and Sons, pp. 385–430.

    Google Scholar 

  • Yost WA (1981) Lateral position of sinusoids presented with interaural intensive and temporal differences. J Acoust Soc Am 70:397–409.

    Article  Google Scholar 

  • Yost WA, Gourevitch G (1987) Directional Hearing. New York; Springer-Verlag.

    Google Scholar 

  • Yost WA, Hafter ER (1987) Lateralization. In: Yost WA, Gourevitch G (eds) Directional Hearing. New York: Springer-Verlag, pp. 49–84.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Wightman, F.L., Kistler, D.J. (1993). Sound Localization. In: Yost, W.A., Popper, A.N., Fay, R.R. (eds) Human Psychophysics. Springer Handbook of Auditory Research, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2728-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2728-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7644-9

  • Online ISBN: 978-1-4612-2728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation