Vertical Scaling Considerations for Polysilicon-Emitter Bipolar Transistors

  • Chapter
Ultra-Fast Silicon Bipolar Technology

Part of the book series: Springer Series in Electronics and Photonics ((SSEP,volume 27))

  • 111 Accesses

Abstract

Until the early 1980s, the industrial standard of high-speed bipolar processes was characterized by implanted base and arsenic implanted, metal-contacted emitter devices. One of the essential achievements leading to the “renaissance” of bipolar technology [3.1] that has occurred since then is the use of polycrystalline silicon (poly-Si) as diffusion source and contact material for the emitter. Besides facilitating the second important achievement, self-alignment between emitter and base contact, the poly-Si emitter has the following major advantages:

  1. i.)

    Without compromising current gain, extremely shallow emitter junction depths can be formed, leading to a strong reduction in emitter charge storage.

  2. ii.)

    Due to the shallow emitter junction, extremely narrow base regions can be realized with sufficient process control. This, of course, serves to reduce base transit time.

  3. iii.)

    The polysilicon layer interposed between the active emitter region and the metal contact enhances device yield considerably due to its gettering capability and its blocking action against metal sintering and spiking .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.W. Wieder. IEDM Techn. Dig. 8 (1986)

    Google Scholar 

  2. T.H. Ning, R.D. Isaac: IEEE Trans. ED-27, 2051 (1980)

    CAS  Google Scholar 

  3. H.C. de Graaf, J.G. de Groot: IEEE Trans. ED-26, 1771 (1979)

    Google Scholar 

  4. J. Graul, A. Glasl, H. Murrmann: IEEE J. SC11, 491 (1976)

    Google Scholar 

  5. Chung C. Ng, Edward S. Yang: IEDM Techn. Dig. 32 (1986)

    Google Scholar 

  6. G.R. Wolstenholme, N. Jorgensen, P. Ashburn, G.R. Booker. J. Appl. Phys. 61, 225 (1986)

    Article  Google Scholar 

  7. B. Benna, T.F. Meister, H. Schaber: Solid-State Electron. 30, 1153 (1987)

    Article  CAS  Google Scholar 

  8. J.M.C. Stork, E. Ganin, J.D. Cressler, G.L. Patton, S.A. Sai-Halasz: IBM J. Res. Develop. 31, 617 (1987)

    Article  CAS  Google Scholar 

  9. Z. Yu, B. Ricco, R.W. Dutton: IEEE Trans. ED-31, 773 (1984)

    CAS  Google Scholar 

  10. A.A. Eltoukly, D.J. Roulston: IEEE Trans. ED-29, 1862 (1982)

    Google Scholar 

  11. B. Benna, T.F. Meister, H. Schaber, A. Wieder IEDM Techn. Dig. 302 (1985)

    Google Scholar 

  12. W.L. Engl: “MEDUSA User Manual”, ITHE Aachen, Techn. Hochschule Aachen (1985)

    Google Scholar 

  13. J.W. Slotboom, H.C. De Graaf: Solid-State Electron. 19, 857 (1976)

    Article  CAS  Google Scholar 

  14. J. Dziewior, W. Schmid: Appl. Phys. Lett. 31, 346 (1977)

    Article  CAS  Google Scholar 

  15. N.D. Arora, J.R. Hauser, DJ. Roulston: IEEE Trans. ED-29, 292 (1982)

    CAS  Google Scholar 

  16. G.L. Patton, J.C. Bravmann, J.D. Plummer. IEEE Trans. ED-33, 1754 (1986)

    CAS  Google Scholar 

  17. R. Stratton: J. Phys. Chem. Solids 23, 1177 (1962)

    Article  Google Scholar 

  18. J.M.C. Stork, C.Y. Wong, M. Arienzo: Symp. on VLSI Technology (May 1985), Dig. Techn. Papers, p.54

    Google Scholar 

  19. T.H. Ning, D.D. Tang: IEEE Trans. ED-31, 409 (1984)

    Google Scholar 

  20. HJ. Böhm, H. Kabza, T.F. Meister, HJ. Wendt Spring Meeting Electrochem. Soc, Philadelphia (May 1987) p.347

    Google Scholar 

  21. D.K. Sadana, et al: Electrochem. Soc. 131, 943 (1984)

    Article  CAS  Google Scholar 

  22. G.A. Rozgonyi, et al.: In Semiconductor Silicon 1986, ed. by H. Huff (Electrochemical Society, Pennington, N.J. 1986) p.696

    Google Scholar 

  23. V. Probst, et al.: In [Ref.3.22, p.594]

    Google Scholar 

  24. A.F.W. Willoughby: In Impurity Do** Processes in Silicon, ed. by F.F.Y. Wang (North-Holland, Amsterdam 1981) p.1

    Google Scholar 

  25. LJ. Varnerin: Proc. IRE. 47, 523 (1959)

    Article  Google Scholar 

  26. T.F. Meister et al., to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meister, T.F., Schaber, H., Ehinger, K., Bieger, J., Benna, B., Maier, I. (1988). Vertical Scaling Considerations for Polysilicon-Emitter Bipolar Transistors. In: Treitinger, L., Miura-Mattausch, M. (eds) Ultra-Fast Silicon Bipolar Technology. Springer Series in Electronics and Photonics, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74360-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74360-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74362-7

  • Online ISBN: 978-3-642-74360-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation