Log in

A comprehensive semi-analytical model of the polysilicon emitter contact in bipolar transistors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper aims to develop a comprehensive physical model for a bipolar transistor’s polysilicon-contacted emitter. Poisson’s equation is solved numerically in the emitter–base space charge region to specify the boundary conditions and the excess minority carriers injected from base to emitter. The continuity and current transport equations are also solved numerically to obtain the minority carrier current in the emitter region. The polysilicon along with the interface layers is modeled by using an effective value for the lifetime. In this model, all the technological parameters of different emitter regions are taken into consideration. Also, the heavy do** effects and the built-in electric field in the shallow non-homogeneous doped single crystalline layer are also included. Such a systematic model does not exist in the literature. The results of the analytical model are numerically evaluated using MATLAB. The trends provided by the model are validated against published experimental results whenever possible and found to be in good agreement with them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hutchinson, C., Frank, M., Negus, K.: Silicon Bipolar 12 GHz down converter for satellite receivers. In: Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting, (BCTM) 198–201 (1995)

  2. Nakamura, T., Nishizawa, H.: Recent progress in bipolar transistor technology. IEEE Trans. Electron Devices 42(3), 390–398 (1995)

    Article  Google Scholar 

  3. Wagner, C., Schuster, J., Gessner, T.: Empirical transport model of strained CNT transistors used for sensor applications. J. Comput. Electron. 15(3), 881–890 (2016)

    Article  Google Scholar 

  4. Sedra, A.S., Smith, K.C.: Microelectronic Circuits. Oxford University Press, New York (2014)

    Google Scholar 

  5. Warnock, J.D.: Silicon bipolar device structures for digital applications: technology trends and future directions. IEEE Trans. Electron Devices 42(3), 377–389 (1995)

    Article  Google Scholar 

  6. Ning, T.H.: History and future perspective of the modern silicon bipolar transistor. IEEE Trans. Electron Devices 48(11), 2485–2491 (2001)

    Article  Google Scholar 

  7. Ning, T.H., Isaac, R.D., Solomon, P.M., Tang, D.L., Yu, H.N., Feth, G.C., Wiedmann, S.K.: Self-aligned bipolar transistors for high-performance and low-power-delay VLSI. IEEE Trans. Electron Devices 28(9), 1010–1013 (1981)

    Article  Google Scholar 

  8. De Graaff, H.C., De Groot, J.G.: The SIS tunnel emitter: a theory for emitters with thin interface layers. IEEE Trans. Electron Devices 26(11), 1771–1776 (1979)

    Article  Google Scholar 

  9. Ning, T.H., Isaac, R.D.: Effect of emitter contact on current gain of silicon bipolar devices. IEEE Trans. Electron Devices 27(11), 2051–2055 (1980)

    Article  Google Scholar 

  10. Neugroschel, A., Arienzo, M.A.U.R.I.Z.I.O., Komem, Y., Isaac, R.D.: Experimental study of the minority-carrier transport at the polysilicon–monosilicon interface. IEEE Trans. Electron Devices 32(4), 807–816 (1985)

    Article  Google Scholar 

  11. Wolstenholme, G.R., Jorgensen, N., Ashburn, P., Booker, G.R.: An investigation of the thermal stability of the interfacial oxide in polycrystalline silicon emitter bipolar transistors by comparing device results with high-resolution electron microscopy observations. J. Appl. Phys. 61(1), 225–233 (1987)

    Article  Google Scholar 

  12. Special Issue on Bipolar and BiCMOS/CMOS Devices and Technologies. IEEE Trans. Electron Devices, 42, (1995)

  13. Sakalas, P., Schroter, M., Zirath, H.: mm-Wave noise modeling in advanced SiGe and InP HBTs. J. Comput. Electron. 14(1), 62–71 (2015)

    Article  Google Scholar 

  14. Peibst, R., Römer, U., Larionova, Y., Rienäcker, M., Merkle, A., Folchert, N., Tetzlaff, D.: Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story? Solar Energy Mater. Solar Cells 158, 60–67 (2016)

    Article  Google Scholar 

  15. Post, I.R., Ashburn, P., Wolstenholme, G.R.: Polysilicon emitters for bipolar transistors: a review and re-evaluation of theory and experiment. IEEE Trans. Electron Devices 39(7), 1717–1731 (1992)

    Article  Google Scholar 

  16. Ajuria, S.A., Gan, C.H., Noel, J.A., Reif, L.R.: Quantitative correlations between the performance of polysilicon emitter transistors and the evolution of polysilicon/silicon interfacial oxides upon annealing. IEEE Trans. Electron Devices 39(6), 1420–1427 (1992)

    Article  Google Scholar 

  17. Loiko, K. V.: A Model for Minority Carrier Mobility in Polysilicon Emitters. scientific J. KubSAU, 90(6), (2013)

  18. Ng, C.C., Yang, E.S.: A thermionic-diffusion model of polysilicon emitter. In: Proceedings IEEE IEDM Technical Digest, 32–35 (1986)

  19. Jalali, B., Yang, E.S.: A general model for minority carrier transport in polysilicon emitters. J. Solid State Electron. 32(4), 323–327 (1989)

    Article  Google Scholar 

  20. Yu, Z., Ricco, B., Dutton, R.W.: A comprehensive analytical and numerical model of polysilicon emitter contacts in bipolar transistors. IEEE Trans. Electron Devices 31(6), 773–784 (1984)

    Article  Google Scholar 

  21. Eltoukhy, A.A., Roulston, D.J.: The role of the interfacial layer in polysilicon emitter bipolar transistors. IEEE Trans. Electron Devices 29(12), 1862–1869 (1982)

    Article  Google Scholar 

  22. Zouari, A., Arab, A.B.: Analytical model and current gain enhancement of polysilicon-emitter contact bipolar transistors. IEEE Trans. Electron Devices 55(11), 3214–3220 (2008)

    Article  Google Scholar 

  23. **, H.Y., Zhang, L.C., Gao, Y.Z., Ye, H.F.: An equivalent heterojunction-like model for polysilicon emitter bipolar transistor. J. Solid State Electron. 47(10), 1719–1727 (2003)

    Article  Google Scholar 

  24. Jiang, X.L., Guo, W.L., Zhang, Y.M.: A unified model of a poly-Si emitter transistor for various emitter structures. J. Semicond. Sci. Technol. 9(5), 1117–1125 (1994)

  25. Suzuki, K.: Unified minority-carrier transport equation for polysilicon or heteromaterial emitter contact bipolar transistors. IEEE Trans. Electron Devices 38(8), 1868–1877 (1991)

    Article  Google Scholar 

  26. Rinaldi, N.F.: On the modeling of polysilicon emitter bipolar transistors. IEEE Trans. Electron Devices 44(3), 395–403 (1997)

    Article  Google Scholar 

  27. Ma, P., Zhang, L., Zhao, B., Wang, Y.: An analytical model for determining carrier transport mechanism of polysilicon emitter bipolar transistors. IEEE Trans. Electron Devices 42(10), 1789–1797 (1995)

    Article  Google Scholar 

  28. Patton, G.L., Bravman, J.C., Plummer, J.D.: Physics, technology, and modeling of polysilicon emitter contacts for VLSI bipolar transistors. IEEE Trans. Electron Devices 33(11), 1754–1768 (1986)

    Article  Google Scholar 

  29. Ashburn P., Soerowirdjo B.: Comparison of experimental and theoretical results on polysilicon emitter bipolar transistors. In: IEEE Transactions Electron Devices, ED-31, 853–860 (1984)

  30. Law, M.E., Solley, E., Liang, M., Burk, D.E.: Self-consistent model of minority-carrier lifetime, diffusion length, and mobility. IEEE Electron Device Lett. 12(8), 401–403 (1991)

    Article  Google Scholar 

  31. Sentaurus, TCAD. “Manuals” Synopsys Inc., Mountain View, CA 94043 (2009)

  32. Neudeck, G., Pierret, R.F., Jaeger, R.W.: Introduction to microelectronic fabrication (1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abouelatta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zekry, A., Shaker, A., Ossaimee, M. et al. A comprehensive semi-analytical model of the polysilicon emitter contact in bipolar transistors. J Comput Electron 17, 246–255 (2018). https://doi.org/10.1007/s10825-017-1082-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1082-8

Keywords

Navigation