Inhibition of G Proteins by Antisense Drugs

  • Chapter
Antisense Research and Application

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 131))

  • 239 Accesses

Abstract

In a multicellular organism, cells communicate with each other mostly through the cell surface, which is represented by the plasma membrane with its lipids and proteins. A subset of the membrane proteins, i.e., receptors, are specialized to recognize and bind signalling molecules if arriving at sufficient concentrations at the cell surfaces. These signalling molecules, called receptor ligands, are either synthesized and secreted by other cells of the organism or taken up from the outside world. Ligands can be hormones, neurotransmitters, autacoids, growth factors, odorants, or physical signals, such as light. The binding of ligands to their cognate receptors leads to intracellular responses, e.g., changes in intracellular ion concentrations, de novo synthesis of proteins, or secretion of presynthesized proteins or transmitters. In many regulatory processes, the intracellular response is mediated by so-called second messengers, e.g., cyclic adenosine or guanosine monophosphate (cAMP or cGMP) or inositol 1,4,5-trisphosphate (IP3), which are generated upon receptor activation as a consequence of the ligand signalling. The extracellular signalling components or ligands are called first messengers, and the membrane structures leading to second messenger generation are generally covered by the terms receptors, signal transducers (G proteins), and effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agrawal S (1996) Antisense therapeutics. In: Walker JM (ed) Methods in molecular medicine. Humana, Totowa, NJ

    Google Scholar 

  • Albert PR, Morris SJ (1994) Antisense knockouts: molecular scalpels for the dissection of signal transduction. Trends Pharmacol Sci 15:250–254

    Article  PubMed  CAS  Google Scholar 

  • Araki E, Lipes MA, Patti M-E, Brüning JC, Haag III B, Johnson RS, Kahn CR (1994) Alternative pathway of insulin signalling in mice with targeted disruption of IRS-1 gene. Nature 372:186–190

    Article  PubMed  CAS  Google Scholar 

  • Baertschi AJ (1994) Antisense oligonucleotide strategies in physiology. Mol Cell Endocrinol 101: R15–R24

    Article  CAS  Google Scholar 

  • Baertschi AJ, Audigier Y, Lledo P-M, Israel J-M, Bockaert J, Vincent J-D (1992) Dialysis of lactotropes with antisense oligonucleotides assigns guanine nucleotide binding protein subtypes to their channel effectors. Mol Endocrinol 6:2257–2265

    Article  PubMed  CAS  Google Scholar 

  • Baldwin JM (1994) Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol 6:180–190

    Article  PubMed  CAS  Google Scholar 

  • Barton CM, Lemoine NR (1995) Antisense oligonucleotides directed against p53 have antiproliferative effects unrelated to effects on p53 expression. Br J Cancer 71:429–437

    Article  PubMed  CAS  Google Scholar 

  • Bennett FC, Chiang M-Y, Chan H, Shoemaker JEE, Mirabelli CK (1992) Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol 41:1023–1033

    PubMed  CAS  Google Scholar 

  • Birnbaumer L (1992) Receptor-to-effector signaling through G proteins: roles for βγ dimers as well as α subunits. Cell 71:1069–1072

    Article  PubMed  CAS  Google Scholar 

  • Buckley NJ, French-Mullen J, Caulfield M (1995) Use of antisense oligonucleotides and monospecific antisera to inhibit G-protein gene expression in cultured neurons. Biochem Soc Trans 23:137–141

    PubMed  CAS  Google Scholar 

  • Burgess TL, Fisher EF, Ross SL, Gready JV, Qian Y-X, Bayewitch LA, Cohen AM, Herrera CJ, Hu SS-F, Kramer TB, Lott FD, Martin FH, Pierce GF, Simonet L, Farrell CF (1995) The antiproliferative activity of c-myb and c-myc antisense oligonucleotides in smooth muscle cells is caused by a nonantisense mechanism. Proc Natl Acad Sci USA 92:4051–4055

    Article  PubMed  CAS  Google Scholar 

  • Campbell V, Berrow N, Dolphin AC (1993) GABAB receptor modulation of Ca2+ currents in rat sensory neurones by the G protein Go: antisense oligonucleotide studies. J Physiol (Lond) 470:1–11

    CAS  Google Scholar 

  • Chang W-J, Ying Y-S, Rothberg KG, Hooper NM, Turner AJ, Gambiel HA, DeGunzburg J, Mumby SM, Gilman AG, Anderson RGW (1994) Purification and characterization of smooth muscle cell caveolae. J Cell Biol 126:127–138

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Baez M, Yu L (1995) Functional coupling of the 5-HT2c serotonin receptor to G proteins in Xenopus oocytes. Neurosci Lett 179:100–102

    Article  Google Scholar 

  • Costa A-MN, Spence KT, Plata-Salamán CR, French-Mullen JMH (1995) Residual Ca2+ channel current modulation by megestrol acetate via a G-protein αs-subunit in rat hypothalamic neurones. J Physiol (Lond) 487:291–303

    CAS  Google Scholar 

  • Crooke RS, Graham MJ, Cooke ME, Crooke ST (1995) In vitro pharmacokinetics of phosphorothioate antisense oligonucleotides. J Pharmacol Exp Ther 275:462–473

    PubMed  CAS  Google Scholar 

  • Crooke ST (1993) Progress toward oligonucleotide therapeutics: pharmacodynamic properties. FASEB J 7:533–539

    PubMed  CAS  Google Scholar 

  • Crooke ST (1995) Therapeutic applications of oligonucleotides. Medical intelligence unit. Landes, Austin, Texas, USA

    Google Scholar 

  • Crooke ST, Bennett CF (1996) Progress in antisense oligonucleotide therapeutics. Annu Rev Pharmacol Toxicol 36:107–129

    Article  PubMed  CAS  Google Scholar 

  • Degtiar VE, Wittig B, Schultz G, Kalkbrenner F (1996) A specific heterotrimer couples somatostatin receptors to voltage-gated calcium channels in RINm5F cells. FEBS Lett 380:137–141

    Article  PubMed  CAS  Google Scholar 

  • Degtiar VE, Wittig B, Schultz G, Kalkbrenner F (1997) Microinjection of antisense oligonucleotides and electrophysiological recording of whole cell currents as tool to identify specific G-protein subtypes coupling hormone receptors to voltage-gated calcium channels. In: Bar-Sagi D (ed) Transmembrane signaling protocols. Methods in molecular biology, vol 84. Humana, Totowa, NJ (in press)

    Google Scholar 

  • De Mazancourt P, Goldsmith PK, Weinstein LS (1994) Inhibition of adenylate cyclase activity by galanin in rat insulinoma cells is mediated by the G-protein Gi3. Biochem J 303:369–375

    PubMed  Google Scholar 

  • Dippel E, Kalkbrenner F, Wittig B, Schultz G (1996) The muscarinic ml receptor couples to specific G-protein heterotrimers to increase the cytosolic calcium concentration. Proc Natl Acad Sci USA 93:1391–1396

    Article  PubMed  CAS  Google Scholar 

  • French-Mullen JMH, Plata-Salamán CR, Buckley NJ, Danks P (1994) Muscarinic modulation by a G-protein alpha-subunit of delayed rectifier K+ current in rat ventromedial hypothalamic neurones. J Physiol (Lond) 474:21–26

    Google Scholar 

  • Goetzl EJ, Shames RS, Yang J, Birke FW, Liu YF Albert PR, An S (1994) Inhibition of human HL-60 cell responses to chemotactic factors by antisense messenger RNA depletion of G proteins. J Biol Chem 269:809–812

    PubMed  CAS  Google Scholar 

  • Gollasch M, Kleuss C, Hescheler J, Wittig B, Schultz G (1993) Gi2 and protein kinase C are required for thyrotropin-releasing hormone-induced stimulation of voltage-dependent Ca2+ channels in rat pituitary GH3 cells. Proc Natl Acad Sci USA 90:6265–6269

    Article  PubMed  CAS  Google Scholar 

  • Gudermann T, Nürnberg B, Schultz G (1995) Receptors and G proteins as primary components of transmembrane signal transduction. 1. G-protein-coupled receptors: structure and function. J Mol Med 73:51–63

    Article  PubMed  CAS  Google Scholar 

  • Gudermann T, Kalkbrenner F, Schultz G (1996) Diversity and selectivity of receptor-G protein interaction. Annu Rev Pharmacol Toxicol 36:429–459

    Article  PubMed  CAS  Google Scholar 

  • Guvakova MA, Yakubov LA, Vlodaysky I, Tonkinson JL, Stein CA (1995) Phosphorothioate oligodeoxynucleotides bind to basic fibroblast factor, inhibits its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 270:2620–2627

    Article  PubMed  CAS  Google Scholar 

  • Hansen CA, Schoering AG, Carey DJ, Robishaw JD (1994) Localisation of a heterotrimeric G protein γsubunit to focal adhesions and associated stress fibers. J Cell Biol 126:811–819

    Article  PubMed  CAS  Google Scholar 

  • Hélène C, Toulmé J-J (1990) Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta 1049:99–125

    Article  PubMed  Google Scholar 

  • Jones SV, Choi OH, Beaven MA (1991) Carbachol induces secretion in a mast cell line (RBL-2H3) transfected with the ml muscarinic receptor. FEBS Lett 289:47–50

    Article  PubMed  CAS  Google Scholar 

  • Kalkbrenner F, Degtiar VE, Schenker M, Brendel S, Zobel A, Hescheler J, Wittig B, Schultz G (1995) Subunit composition of Go proteins functionally coupling galanin receptors to voltage-gated calcium channels. EMBO J 14:4728–4737

    PubMed  CAS  Google Scholar 

  • Kalkbrenner F, Dippel E, Wittig B, Schultz G (1996) Specificity of the receptor—Gprotein interaction: using antisense techniques to identify the function of G protein-subunits. Biochim Biophys Acta 1314:125–139

    Article  PubMed  CAS  Google Scholar 

  • Kalkbrenner F, Dippel E, Schroff M, Wittig B, Schultz G (1997) Intranuclear micro-injection and ballistomagnetic transfer of antisense oligonucleotides as tools to determine receptor interaction of G-protein heterotrimers causing phospholipase C-β activation. In Challis RAJ (ed) Receptor signal transduction protocols. Methods in molecular biology, vol 83. Humana, Totowa, NJ, pp 203–216

    Chapter  Google Scholar 

  • Kasahara J, Sugiyama H (1994) Inositol phospholipid metabolism in Xenopus oocytes mediated by endogenous Go and Gi protein. FEBS Lett 355:41–44

    Article  PubMed  CAS  Google Scholar 

  • Kleuss C, Hescheler J, Ewel C, Rosenthal W, Schultz G, Wittig B (1991) Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 353:43–48

    Article  PubMed  CAS  Google Scholar 

  • Kleuss C, Scherübel H, Hescheler J, Schultz G, Wittig B (1992) Different β-subunits determine G-protein interaction with transmembrane receptors. Nature 358:424–426

    Article  PubMed  CAS  Google Scholar 

  • Kleuss C, Scherübel H, Hescheler J, Schultz G, Wittig B (1993) Selectivity in signal transduction determined by γ subunits of heterotrimeric G proteins. Science 259:832–834

    Article  PubMed  CAS  Google Scholar 

  • Kleuss C, Schultz G, Wittig B (1994) Microinjection of antisense oligonucleotides to assess G-protein subunit function. Methods Enzymol 237:345–355

    Article  PubMed  CAS  Google Scholar 

  • Kwon G, Axelrod D, Neubig RR (1994) Lateral mobility of tetramethylrhodamine (TMR) labelled G protein α and βγsubunits in NG 108–15 cells. Cell Signal 6:663–679

    Article  PubMed  CAS  Google Scholar 

  • Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH, Nishimoto I, Lisanti MP (1995) Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 270:15693–15701

    Article  PubMed  CAS  Google Scholar 

  • Li S, Song K, Lisanti MP (1996) Expression and characterization of recombinant caveolin. J Biol Chem 271:568–573

    Article  PubMed  CAS  Google Scholar 

  • Lisanti MP, Scherer PE, Vidugiriene J, Tang ZL, Hermanowski-Vosatka A, Tu Y-H, Cook RF, Sargiacomo M (1994) Characterization of caveolin-rich membrane domains isolated from an endothelin-rich source: implications for human disease. J Cell Biol 126:111–126

    Article  PubMed  CAS  Google Scholar 

  • Liu YF, Jakobs KH, Rasenick MM, Albert PR (1994) G protein specificity in receptor-effector coupling. J Biol Chem 269:13880–13886

    PubMed  CAS  Google Scholar 

  • Loke SL, Stein CA, Zhang XH, Mori K, Nakanishi M, Subashinghe C, Cohen JS, Neckers LM (1989) Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci USA 86:3474–3478

    Article  PubMed  CAS  Google Scholar 

  • Macrez-Leprêtre N, Kalkbrenner F, Schultz G, Mironneau J (1997a) Distinct functions of Gq and Gll proteins in coupling α1A -adrenoceptors to Ca2+ release and Ca2+ entry in rat portal vein myocyte. J Biol Chem 272:5261–5268

    Article  Google Scholar 

  • Macrez-Leprêtre N, Kalkbrenner F, Morel J-L, Schultz G, Mironneau J (1997b) G protein heterotrimer Gα13β1γ3 couples angiotensin AT1A receptor to increase in cytosolic Ca2+ in rat portal vein myocytes. J Biol Chem 272:10095–10102

    Article  Google Scholar 

  • Meissner JD, Brown GA, Mueller WH, Scheibe RJ (1996) Retinoic acid-mediated decrease of Gas protein expression: involvement of Gas in the differentiation of HL-60 myeloid cells. Exp Cell Res 225:112–121

    Article  PubMed  CAS  Google Scholar 

  • Milligan G (1995) Signal sorting by G-protein-linked receptors. Adv Pharmacol 32:129

    Google Scholar 

  • Milligan JF, Matteucci MD, Martin JC (1993) Current concepts in antisense drug design. J Med Chem 36:1923–1937

    Article  PubMed  CAS  Google Scholar 

  • Mortensen RM, Seidman JG (1994) Inactivation of G-protein genes: double knockout in cell lines. Methods Enzymol 237:356–386

    Article  PubMed  CAS  Google Scholar 

  • Moxam CM, Malbon CC (1996) Insulin action impaired by deficiency of the G-protein subunit Giα2. Nature 379:840–844

    Article  Google Scholar 

  • Moxam CM, Hod Y, Malbon CC (1993a) Induction of Gαi2-specific antisense RNA in vivo inhibits neonatal growth. Science 260:991–995

    Article  Google Scholar 

  • Moxam CM, Hod Y, Malbon CC (1993b) Giα2 mediates the inhibitory regulation of adenylylcyclase in vivo: analysis in transgenic mice with Giα2 suppressed by inducible antisense RNA. Dev Genet 14:266–273

    Article  Google Scholar 

  • Neer EJ (1995) Heterotrimeric G proteins: organizer of transmembrane signals. Cell 80:249–257

    Article  PubMed  CAS  Google Scholar 

  • Neubig RR (1994) Membrane organization in G-protein mechanisms. FASEB J 8:939–946

    PubMed  CAS  Google Scholar 

  • Nürnberg B, Gudermann T, Schultz G (1995) Receptors and G proteins as primary components of transmembrane signal transduction, part 2. G proteins: structure and function. J Mol Med 73:123–132, correction: 73:379

    Article  Google Scholar 

  • Offermanns S, Schultz G (1994) Complex information processing by the transmembrane signaling system involving G proteins. Naunyn Schmiedebergs Arch Pharmacol 350:329–338

    Article  PubMed  CAS  Google Scholar 

  • Offermanns S, Laugwitz K-L, Spicher K, Schultz G (1994) G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci USA 31:504–508

    Article  Google Scholar 

  • Offermanns S, Mancino V, Revel, J-P, Simon MI (1997) Vascular system defects and impaired cell chemokinesis as a result of Gα13 deficiency. Science 275:533–536

    Article  PubMed  CAS  Google Scholar 

  • Pasternak GW, Standifer KM (1995) Map** of opioid receptors using antisense oligodeoxynucleotides: correlating their molecular biology and pharmacology. Trends Pharmacol Sci 16:344–350

    Article  PubMed  CAS  Google Scholar 

  • Paulssen RH, Paulssen EJ, Gautvik KM, Gordeladze JO (1992) The thyroliberin receptor interacts directly with a stimulatory guanine-nucleotide-binding protein in the activation of adenylyl cyclase in GH3 rat pituitary tumour cells. Eur J Biochem 204:413–418

    Article  PubMed  CAS  Google Scholar 

  • Plata-Salamán CR, Wilson CD, Sonti G, Borkowski JP, French-Mullen JM (1995) Antisense oligodeoxynucleotides to G-protein α-subunit subclasses identify a transductional requirement for the modulation of normal feeding dependent on GαoA subunit. Brain Res Mol Brain Res 33:72–78

    Article  PubMed  Google Scholar 

  • Quick MW, Simon MI, Davidson N, Lester HA, Aragay A (1994) Differential coupling of G protein α subunits to seven-helix receptors expressed in Xenopus oocytes. J Biol Chem 269:30164–30172

    PubMed  CAS  Google Scholar 

  • Raffa RB (1996) In vivo antisense strategy for the study of second-messengers: application to G-proteins. In: Raffa RB, Porecca F (eds) Antisense strategies for the study of receptor mechanisms. Landes, Austin, Texas, USA, pp 53–69

    Google Scholar 

  • Raffa RB, Porecca F (1996) Antisense strategies for the study of receptor mechanisms. Landes, Austin, Texas, USA

    Google Scholar 

  • Raffa RB, Martinez RP, Connelly CD (1994) G-protein antisense oligodeoxyribonucleotides and µ-opioid supraspinal antinociception. Eur J Pharmacol 258:R5–R7

    Article  PubMed  CAS  Google Scholar 

  • Raffa RB, Goode TL, Martinez RP, Jacoby HI (1996a) A Gi2a antisense oligonucleotide differentiates morphine antinociception, constipation and acute dependence in mice. Life Sci 58:73–76

    Google Scholar 

  • Raffa RB, Conelly CD, Chambers JR, Stone DJ (1996b) α-subunits G-protein antisense oligonucleotide effects on supraspinal (i.c.v.) α2-adrenoceptor antinociception in mice. Life Sci 58:77–80

    Google Scholar 

  • Rossi GC, Standifer KM, Pasternak GW (1995) Differential blockade of morphine and morphine-6β-glucuronide analgesia by antisense oligodeoxynucleotides directed against MOR-1 and G-protein α subunits in rats. Neurosci Lett 198:99–102

    Article  PubMed  CAS  Google Scholar 

  • Rudolph U, Finegold MJ, Rich SS, Harriman GR, Srinivansan Y, Brabet P, Boulay G, Bradley A, Birnbaumer L (1995) Ulcerative colitis and adenocarcinoma of the colon in Gαi2-deficient mice. Nature Genet 10:143–150

    Article  PubMed  CAS  Google Scholar 

  • Rudolph U, Spicher K, Birnbaumer L (1996) Adenylyl cyclase inhibition and altered G protein subunit expression and ADP-ribosylation patterns in tissues and cells from Gi2α -/- mice. Proc Natl Acad Sci USA 93:3209–3214

    Article  PubMed  CAS  Google Scholar 

  • Sargiacomo M, Sudol M, Tang ZL, Lisanti MP (1993) Signal transduction molecules and glycosyl-phosphatidylinositol-linked proteins form caveolin-rich insoluble complex in MDCK cells. J Cell Biol 122:789–807

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Blázquez P, García-España A, Garzón J (1995) In vivo injection of antisense oligodeoxynucleotides to Gα subunits and supraspinal analgesia evoked by mu and delta opioid agonists. J Pharmacol Exp Ther 275:1590–1596

    PubMed  Google Scholar 

  • Shapira H, Way J, Lipinsky D, Oron Y, Battey JF (1994) Neuromedin B receptor, expressed in Xenopus laevis oocytes, selectively couples to Gαq and not Gαll. FEBS Lett 348:89–92

    Article  PubMed  CAS  Google Scholar 

  • Schreibmayer W, Dessauer CW, Vorobiov D, Gilman AG, Lester HA, Davidson N, Dascal N (1996) Inhibition of an inwardly rectifying K+ channel by G-protein α-subunits. Nature 380:624–627

    Article  PubMed  CAS  Google Scholar 

  • Schlingensiepen KH, Schlingensiepen R, Brysch W (1996) Antisense oligodeoxynucleotides: from technology to therapy. Blackwell International/Blackwell Wissenschaft, Berlin

    Google Scholar 

  • Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 232:802–808

    Article  Google Scholar 

  • Srinivasan SK, Tewary HK, Iversen PL (1995) Characterization of binding sites, extent of binding, and drug interaction of oligonucleotides with albumin. Antisense Res Dev 5:131–139

    PubMed  CAS  Google Scholar 

  • Standifer KM, Rossi GC, Pasternak GW (1996) Differential blockade of opioid analgesia by antisense oligodeoxynucleotides directed against various G protein α subunits. Mol Pharmacol 50:293–298

    PubMed  CAS  Google Scholar 

  • Stehno-Bittel L, Krapivinsky G, Krapivinsky L, Perez-Terzic C, Clapham D (1995) The G protein βγ subunit transduces the muscarinic receptor signal for Ca2+ release in Xenopus oocytes. J Biol Chem 270:30068–30074

    Article  PubMed  CAS  Google Scholar 

  • Stein CA, Cheng Y-C (1993) Antisense oligonucleotides as therapeutic agents — is the bullet really magical? Science 261:1004–1012

    Article  PubMed  CAS  Google Scholar 

  • Strader CD, Fong TM, Tota MR, Underwood D, Dixon RAF (1994) Structure and function of G protein-coupled receptors. Annu Rev Biochem 63:101–132

    Article  PubMed  CAS  Google Scholar 

  • Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S, Sekihara H, Yoshioka S, Horikoshi H, Furuta Y, Ikawa Y, Kasuga M, Yazaki Y, Aizawa S (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372:182–186

    Article  PubMed  CAS  Google Scholar 

  • Tang T, Kiang, JG, Côte TE, Cox BM (1995) Antisense oligodeoxynucleotide to the Gi2 protein α subunit sequence inhibits an opioid-induced increase in the intracellular free calcium concentration in ND8–47 neuroblastoma x dorsal root ganglion hybrid cells. Mol Pharmacol 48:189–193

    PubMed  CAS  Google Scholar 

  • Voisin T, Lorinet A-M, Maoret J-J, Couvineau A, Laburthe M (1996a) Gαi RNA antisense expression demonstrates the exclusive coupling of peptide YY receptors to Gi2 proteins in renal proximal tubule cells. J Biol Chem 271:574–580

    Article  CAS  Google Scholar 

  • Voisin T, Lorinet A-M, Laburthe M (1996a) Partial knockdown of Gαi2 protein is sufficient to abolish the coupling of PYY receptors to biological response in renal proximal tubule cells. Biochem Biophys Res Commun 225:16–21

    Article  CAS  Google Scholar 

  • Wahlestedt C (1994) Antisense oligonucleotide strategies in neuropharmacology. Trends Pharmacol Sci 15:42–46

    Article  PubMed  CAS  Google Scholar 

  • Wahlestedt C (1996) Antisense “knockdown” strategies in neurotransmitter receptor research. In: Raffa RB, Porecca F (eds) Antisense strategies for the study of receptor mechanisms. Landes, Austin, Texas, USA, pp 1–10

    Google Scholar 

  • Wang H-Y, Watkins DC, Malbon CC (1992) Antisense oligodeoxynucleotides to Gs protein α-subunit sequence accelerate differentiation of fibroblasts to adipocytes. Nature 358:334–337

    Article  PubMed  CAS  Google Scholar 

  • Wang H-Y, Johnson GL, Liu X, Malbon CC (1996) Repression of adipogenesis by adenylyl cyclase stimulatory G-protein α subunit is expressed within region 146220. J Biol Chem 271:22022–22029

    Article  PubMed  CAS  Google Scholar 

  • Watkins DC, Johnson GL, Malbon CC (1992) Regulation of differentiation of teratocarcinoma cells into primitive endoderm by Gαi2 Science 258:1373–1375

    Article  PubMed  CAS  Google Scholar 

  • Watkins DC, Moxham CM, Morris AJ, Malbon CC (1994) Suppression of Giα2 en-hances phospholipase C signalling. Biochem J 299:593–596

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalkbrenner, F., Wittig, B., Schultz, G. (1998). Inhibition of G Proteins by Antisense Drugs. In: Crooke, S.T. (eds) Antisense Research and Application. Handbook of Experimental Pharmacology, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58785-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58785-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63730-8

  • Online ISBN: 978-3-642-58785-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation