Fuzzy-Based Knowledge Design and Delivery Model for Personalised Learning

  • Conference paper
  • First Online:
Digital Transformation in Education and Artificial Intelligence Application (MoStart 2024)

Abstract

Adaptation to the level of knowledge of each student remains one of the key challenges of e-learning and education in general. E-learning systems provide opportunity for systematic data collection about learning activities offering valuable insights into the students’ knowledge. In order to achieve the personalised learning, this study introduces a Knowledge Design and Delivery Model (KDDM) for intelligent tutoring systems. This model uses a hybrid approach that combines traditional overlay student models with fuzzy logic and multi-criteria decision-making methods. Unlike popular machine learning approaches, these methods do not require existing datasets and they allow direct teacher involvement in knowledge delivery. The KDDM associates student stereotypes with Bloom’s revised taxonomy levels, providing a reference point for the cybernetic model. KDDM has been successfully implemented and examined in a two-year experiment which confirmed its effectiveness on 370 participants from two universities in two countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Digital libraries ACM and IEEE, Scopus, SpringerLink, Elsevier i Google Scholar.

References

  1. Bloom, B.S., et al.: Taxonomy of educational objectives: the classification of educational goals. In: Handbook 1: Cognitive Domain. McKay, New York (1956)

    Google Scholar 

  2. Gronlund, N.E.: Measurement and evaluation in teaching. In: Measurement and Evaluation in Teaching, pp. xv–540 (1985)

    Google Scholar 

  3. Mužić, V.: Testovi znanja. Školska knjiga (1968)

    Google Scholar 

  4. Hwang, C.-L., et al.: Methods for multiple attribute decision making. In: Multiple Attribute Decision Making: Methods and Applications a State-of-the-Art Survey, pp. 58–191 (1981)

    Google Scholar 

  5. VanLehn, K.: Student modeling. In: Polson, M., Richardson, J. (eds.) Foundations of Intelligent Tutoring Systems, pp. 55–78 (1988)

    Google Scholar 

  6. Božičević, J.: Temelji automatike: I. knjiga: sustavno gledište i automatika, automatsko reguliranje. Školska knjiga (1990)

    Google Scholar 

  7. Novak, J.D.: Concept map**: a useful tool for science education. J. Res. Sci. Teach. 27(10), 937–949 (1990)

    Article  Google Scholar 

  8. Božičević, J.: Od kibernetike do znanosti o sustavima. Sustavsko mišljenje, Hrvat. društvo za sustave, pp. 9–14 (1992)

    Google Scholar 

  9. Shute, V.J., Psotka, J.: Intelligent tutoring systems: past, present, and future. Armstrong Laboratory, Air Force Materiel Command (1994)

    Google Scholar 

  10. Papanikolaou, K.A., Grigoriadou, M., Kornilakis, H., Magoulas, G.D.: INSPIRE: an INtelligent system for personalized instruction in a remote environment. In: Reich, S., Tzagarakis, M.M., De Bra, P.M.E. (eds.) AH 2001. LNCS, vol. 2266, pp. 215–225. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45844-1_21

    Chapter  Google Scholar 

  11. Saaty, T.L.: Fundamentals of the analytic hierarchy process. In: The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making (2001)

    Google Scholar 

  12. VanLehn, K., et al.: The architecture of why2-atlas: a coach for qualitative physics essay writing. In: Cerri, S.A., Gouardères, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 158–167. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47987-2_20

    Chapter  Google Scholar 

  13. Xu, D., Wang, H., Su, K.: Intelligent student profiling with fuzzy models. In: Proceedings of the 35th Annual Hawaii International Conference on System Sciences. IEEE (2002)

    Google Scholar 

  14. Kosba, E., Dimitrova, V., Boyle, R.: Fuzzy student modeling to advise teachers in web-based distance courses. Int. J. Artif. Intell. Tools Spec. Issue AI Tech. Web-Based Educ. Syst. 13(2), 279–297 (2003)

    Article  Google Scholar 

  15. Šimić, G., Devedžić, V.: Building an intelligent system using modern internet technologies. Expert Syst. Appl. 25(2), 231–246 (2003)

    Article  Google Scholar 

  16. Tsaganou, G., et al.: Evaluating an intelligent diagnosis system of historical text comprehension. Expert Syst. Appl. 25(4), 493–502 (2003)

    Article  Google Scholar 

  17. Kavcic, A.: Fuzzy student model in InterMediActor platform. In: 26th International Conference on Information Technology Interfaces. IEEE (2004)

    Google Scholar 

  18. Greco, S., Figueira, J., Ehrgott, M.: Multiple Criteria Decision Analysis, vol. 37. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3094-4

    Book  Google Scholar 

  19. Stathacopoulou, R., et al.: Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis. Inf. Sci. 170(2–4), 273–307 (2005)

    Article  Google Scholar 

  20. Salim, N., Haron, N.: The construction of fuzzy set and fuzzy rule for mixed approach in adaptive hypermedia learning system. In: Pan, Z., Aylett, R., Diener, H., **, X., Göbel, S., Li, L. (eds.) Edutainment 2006. LNCS, vol. 3942, pp. 183–187. Springer, Heidelberg (2006). https://doi.org/10.1007/11736639_26

    Chapter  Google Scholar 

  21. CP, IP UNED. Adaptation based on machine learning, user modelling and planning for complex user-oriented tasks

    Google Scholar 

  22. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering, p. 1051 (2007)

    Google Scholar 

  23. Bontchev, B., et al.: Architectural design of a software engine for adaptation control in the adopta e-learning platform. In: Proceedings of the International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing (2009)

    Google Scholar 

  24. Anderson, L.W., Krathwohl, D.R.: A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives: Complete Edition. Addison Wesley Longman, Inc. (2001)

    Google Scholar 

  25. žitko, B.: Model inteligentnog tutorskog sustava zasnovan na obradi kontroliranog jezika nad ontologijom. Diss. Fakultet elektrotehnike i računarstva (2010)

    Google Scholar 

  26. VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educ. Psychol. 46(4), 197–221 (2011)

    Article  Google Scholar 

  27. Grubišić, A.: Model prilagodljivoga stjecanja znanja učenika u sustavima e-učenja. Diss. University of Zagreb. Faculty of Electrical Engineering and Computing. Department of Electronics, Microelectronics, Computer and Intelligent Systems. University of Split. University of Split, Faculty of Science (2012)

    Google Scholar 

  28. Chrysafiadi, K., Virvou, M.: PeRSIVA: an empirical evaluation method of a student model of an intelligent e-learning environment for computer programming. Comput. Educ. 68, 322–333 (2013)

    Article  Google Scholar 

  29. Chrysafiadi, K., Virvou, M.: Student modeling approaches: a literature review for the last decade. Expert Syst. Appl. 40(11), 4715–4729 (2013)

    Article  Google Scholar 

  30. Steenbergen-Hu, S., Cooper, H.: A meta-analysis of the effectiveness of intelligent tutoring systems on K-12 students’ mathematical learning. J. Educ. Psychol. 105(4), 970 (2013)

    Article  Google Scholar 

  31. Doleck, T., et al.: Augmenting the novice-expert overlay model in an intelligent tutoring system: Using confidence-weighted linear classifiers. In: International Conference on Computational Intelligence and Computing Research. IEEE (2014)

    Google Scholar 

  32. Steenbergen-Hu, S., Cooper, H.: A meta-analysis of the effectiveness of intelligent tutoring systems on college students’ academic learning. J. Educ. Psychol. 106(2), 331 (2014)

    Article  Google Scholar 

  33. Volarić, T., Vasić, D., Brajković, E.: Adaptive tool for teaching programming using conceptual maps. In: Hadžikadić, M., Avdaković, S. (eds.) Advanced Technologies, Systems, and Applications. LNNS, vol. 3, pp. 335–347. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47295-9_27

    Chapter  Google Scholar 

  34. Barrón-Estrada, M.L., Zatarain-Cabada, R., Hernández, F.G., Bustillos, R.O., Reyes-García, C.A.: An affective and cognitive tutoring system for learning programming. In: Lagunas, O.P., Alcántara, O.H., Figueroa, G.A. (eds.) MICAI 2015. LNCS (LNAI), vol. 9414, pp. 171–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27101-9_12

    Chapter  Google Scholar 

  35. Zubrinic, K., Kalpic, D., Milicevic, M.: The automatic creation of concept maps from documents written using morphologically rich languages. Expert Syst. Appl. 39(16), 12709–12718 (2012)

    Article  Google Scholar 

  36. Nugumanova, A., et al.: Automatic generation of concept maps based on collection of teaching materials. In: International Conference on Data Management Technologies and Applications, vol. 2. SCITEPRESS (2015)

    Google Scholar 

  37. Aleven, V., et al.: Help helps, but only so much: research on help seeking with intelligent tutoring systems. Int. J. Artif. Intell. Educ. 26, 205–223 (2016)

    Article  Google Scholar 

  38. Volarić, T., et al.: Data augmentation with GAN to improve the prediction of at-risk students in a virtual learning environment. In: Wang, N., Rebolledo-Mendez, G., Dimitrova, V., Matsuda, N., Santos, O.C. (eds.) AIED 2023. CCIS, vol. 1831. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36336-8_40

    Chapter  Google Scholar 

  39. Kulik, J.A., Fletcher, J.D.: Effectiveness of intelligent tutoring systems: a meta-analytic review. Rev. Educ. Res. 86(1), 42–78 (2016)

    Article  Google Scholar 

  40. Sani, S.M., Bichi, A.B., Ayuba, S.: Artificial intelligence approaches in student modeling: half decade review (2010-2015). IJCSN-Int. J. Comput. Sci. Netw. 5(5) (2016)

    Google Scholar 

  41. Crockett, K., Latham, A., Whitton, N.: On predicting learning styles in conversational intelligent tutoring systems using fuzzy decision trees. Int. J. Hum. Comput. Stud. 97, 98–115 (2017)

    Article  Google Scholar 

  42. Wilson, C., Scott, B.: Adaptive systems in education: a review and conceptual unification. Int. J. Inf. Learn. Technol. 34(1), 2–19 (2017)

    Article  Google Scholar 

  43. Al Duhayyim, M., Newbury, P.: Adaptive e-learning system using fuzzy logic and concept map. Int. J. Educ. Pedagogical Sci. 12(8), 1105–1112 (2018)

    Google Scholar 

  44. Troussas, C., Chrysafiadi, K., Virvou, M.: An intelligent adaptive fuzzy-based inference system for computer-assisted language learning. Expert Syst. Appl. 127, 85–96 (2019)

    Article  Google Scholar 

  45. Kumar, A., Ahuja, N.J.: An adaptive framework of learner model using learner characteristics for intelligent tutoring systems. In: Choudhury, S., Mishra, R., Mishra, R.G., Kumar, A. (eds.) Intelligent Communication, Control and Devices. AISC, vol. 989, pp. 425–433. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8618-3_45

    Chapter  Google Scholar 

  46. Troussas, C., Krouska, A., Sgouropoulou, C.: Collaboration and fuzzy-modeled personalization for mobile game-based learning in higher education. Comput. Educ. 144, 103698 (2020)

    Article  Google Scholar 

  47. Papakostas, C., et al.: Modeling the knowledge of users in an augmented reality-based learning environment using fuzzy logic. In: Krouska, A., Troussas, C., Caro, J. (eds.) NiDS 2022. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17601-2_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Volarić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Volarić, T., Ljubić, H., Rozić, R. (2024). Fuzzy-Based Knowledge Design and Delivery Model for Personalised Learning. In: Volarić, T., Crnokić, B., Vasić, D. (eds) Digital Transformation in Education and Artificial Intelligence Application. MoStart 2024. Communications in Computer and Information Science, vol 2124. Springer, Cham. https://doi.org/10.1007/978-3-031-62058-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62058-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62057-7

  • Online ISBN: 978-3-031-62058-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation