Enhancing Representation Learning of EEG Data with Masked Autoencoders

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14695))

Included in the following conference series:

  • 146 Accesses

Abstract

Self-supervised learning has been a powerful training paradigm to facilitate representation learning. In this study, we design a masked autoencoder (MAE) to guide deep learning models to learn electroencephalography (EEG) signal representation. Our MAE includes an encoder and a decoder. A certain proportion of input EEG signals are randomly masked and sent to our MAE. The goal is to recover these masked signals. After this self-supervised pre-training, the encoder is fine-tuned on downstream tasks. We evaluate our MAE on EEGEyeNet gaze estimation task. We find that the MAE is an effective brain signal learner. It also significantly improves learning efficiency. Compared to the model without MAE pre-training, the pre-trained one achieves equal performance with 1/3 the time of training and outperforms it in half the training time. Our study shows that self-supervised learning is a promising research direction for EEG-based applications as other fields (natural language processing, computer vision, robotics, etc.), and thus we expect foundation models to be successful in EEG domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We also experiment with mean squared error (MSE) loss function, the performance increase brought by it is not obvious.

  2. 2.

    Here “EEGViT" is equivalent to “EEGViT Pre-trained" in Table 4 of [29]. This applies to the following mentions as well.

References

  1. Altaheri, H., et al.: Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: a review. Neural Comput. Appl. 35(20), 14681–14722 (2023)

    Article  Google Scholar 

  2. Bao, H., Dong, L., Piao, S., Wei, F.: Beit: bert pre-training of image transformers. ar**v preprint ar**v:2106.08254 (2021)

  3. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. ar**v preprint ar**v:1511.06448 (2015)

  4. Bommasani, R., et al.: On the opportunities and risks of foundation models. ar**v preprint ar**v:2108.07258 (2021)

  5. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  6. Chen, M., et al.: Generative pretraining from pixels. In: International Conference on Machine Learning. pp. 1691–1703. PMLR (2020)

    Google Scholar 

  7. Chien, H.Y.S., Goh, H., Sandino, C.M., Cheng, J.Y.: Maeeg: masked auto-encoder for EEG representation learning. ar**v preprint ar**v:2211.02625 (2022)

  8. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)

    Article  Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. ar**v preprint ar**v:2010.11929 (2020)

  11. Firoozi, R., et al.: Foundation models in robotics: applications, challenges, and the future. ar**v preprint ar**v:2312.07843 (2023)

  12. He, K., Chen, X., **e, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  13. Kastrati, A., et al.: EEGEyenet: a simultaneous electroencephalography and eye-tracking dataset and benchmark for eye movement prediction. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1) (2021)

    Google Scholar 

  14. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of naacl-HLT, vol. 1, p. 2 (2019)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  16. Kostas, D., Aroca-Ouellette, S., Rudzicz, F.: Bendr: using transformers and a contrastive self-supervised learning task to learn from massive amounts of eeg data. Front. Hum. Neurosci. 15, 653659 (2021)

    Article  Google Scholar 

  17. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: Eegnet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Article  Google Scholar 

  18. Li, C., et al.: Multimodal foundation models: from specialists to general-purpose assistants, vol. 1, no. 2, p. 2 (2023). ar**v preprint ar**v:2309.10020

  19. Mao, W., Fathurrahman, H., Lee, Y., Chang, T.: EEG dataset classification using CNN method. In: Journal of Physics: Conference Series, vol. 1456, p. 012017. IOP Publishing (2020)

    Google Scholar 

  20. Murungi, N.K., Pham, M.V., Dai, X.C., Qu, X.: Empowering computer science students in electroencephalography (EEG) analysis: a review of machine learning algorithms for EEG datasets (2023)

    Google Scholar 

  21. OpenAI, R.: Gpt-4 technical report. ar**v, pp. 2303–08774 (2023)

    Google Scholar 

  22. Peng, R., et al.: Wavelet2vec: a filter bank masked autoencoder for EEG-based seizure subtype classification. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2023)

    Google Scholar 

  23. Pulver, D., Angkan, P., Hungler, P., Etemad, A.: EEG-based cognitive load classification using feature masked autoencoding and emotion transfer learning. In: Proceedings of the 25th International Conference on Multimodal Interaction, pp. 190–197 (2023)

    Google Scholar 

  24. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  25. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google Scholar 

  26. Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019)

    Article  Google Scholar 

  27. Weng, N., Płomecka, M.B., Kaufmann, M., Kastrati, A., Wattenhofer, R., Langer, N.: An interpretable attention-based method for gaze estimation using electroencephalography (2023)

    Google Scholar 

  28. **ao, G., Shi, M., Ye, M., Xu, B., Chen, Z., Ren, Q.: 4d attention-based neural network for EEG emotion recognition. Cogn. Neurodyn. 1–14 (2022)

    Google Scholar 

  29. Yang, R., Modesitt, E.: Vit2eeg: leveraging hybrid pretrained vision transformers for eeg data. ar**v preprint ar**v:2308.00454 (2023)

  30. Yang, S., Nachum, O., Du, Y., Wei, J., Abbeel, P., Schuurmans, D.: Foundation models for decision making: problems, methods, and opportunities. ar**v preprint ar**v:2303.04129 (2023)

  31. Yi, L., Qu, X.: Attention-based CNN capturing EEG recording’s average voltage and local change. In: Degen, H., Ntoa, S. (eds.) HCII 2022. LNCS, vol. 13336, pp. 448–459. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-05643-7_29

    Chapter  Google Scholar 

  32. Zhou, C., et al.: A comprehensive survey on pretrained foundation models: a history from bert to chatGPT. ar**v preprint ar**v:2302.09419 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifei Zhou .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Liu, S. (2024). Enhancing Representation Learning of EEG Data with Masked Autoencoders. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2024. Lecture Notes in Computer Science(), vol 14695. Springer, Cham. https://doi.org/10.1007/978-3-031-61572-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61572-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61571-9

  • Online ISBN: 978-3-031-61572-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation