Attention-Based CNN Capturing EEG Recording’s Average Voltage and Local Change

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13336))

Included in the following conference series:

Abstract

The attention mechanism is one of the most popular deep learning techniques in recent years and it is arguably able to produce human-interpretable results. In this research, we developed a classification model combining two self-attention modules and a convolutional neural network. This model achieved benchmark or superior performance on two electroencephalography (EEG) recording datasets. Moreover, we demonstrated that the self-attention modules were able to capture features, including average voltage of signal features and instant voltage change of the EEG signals, by visualizing the attention maps they produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/longyi1207/Attention_Based_CNN/blob/main/Attention_Based_CNN.py.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). http://arxiv.org/abs/1409.0473, cite arxiv:1409.0473Comment. Accepted at ICLR 2015 as oral presentation

  2. Bang, J.S., Lee, S.W.: Interpretable convolutional neural networks for subject-independent motor imagery classification (2021)

    Google Scholar 

  3. Blankertz, B., et al.: The BCI competition. III: validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 153–159 (2006). https://doi.org/10.1109/TNSRE.2006.875642

  4. Chaudhari, S., Mithal, V., Polatkan, G., Ramanath, R.: An attentive survey of attention models (2021)

    Google Scholar 

  5. Chen, K., Wang, J., Chen, L.C., Gao, H., Xu, W., Nevatia, R.: ABC-CNN: an attention based convolutional neural network for visual question answering, November 2015

    Google Scholar 

  6. Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine reading (2016)

    Google Scholar 

  7. Cisotto, G., Zanga, A., Chlebus, J., Zoppis, I., Manzoni, S., Markowska-Kaczmar, U.: Comparison of attention-based deep learning models for EEG classification (2020)

    Google Scholar 

  8. Cordonnier, J.B., Loukas, A., Jaggi, M.: On the relationship between self-attention and convolutional layers (2020)

    Google Scholar 

  9. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)

    Google Scholar 

  10. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale (2021)

    Google Scholar 

  11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  13. Lee, Y.E., Lee, S.H.: EEG-transformer: self-attention from transformer architecture for decoding EEG of imagined speech (2021)

    Google Scholar 

  14. Liu, X., Shen, Y., Liu, J., Yang, J., **ong, P., Lin, F.: Parallel spatial-temporal self-attention CNN-based motor imagery classification for BCI. Front. Neurosci. 14 (2020). https://doi.org/10.3389/fnins.2020.587520. https://www.frontiersin.org/article/10.3389/fnins.2020.587520

  15. Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)

    Google Scholar 

  16. Lotte, F., Lécuyer, A., Guan, C.: Towards a Fully Interpretable EEG-based BCI System, July 2010. https://hal.inria.fr/inria-00504658. Working paper or preprint

  17. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation (2015)

    Google Scholar 

  18. Qu, X., Hall, M., Sun, Y., Sekuler, R., Hickey, T.J.: A personalized reading coach using wearable EEG sensors-a pilot study of brainwave learning analytics, pp. 501–507 (2018)

    Google Scholar 

  19. Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_3

  20. Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and ty** for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_7

  21. Qu, X., Sun, Y., Sekuler, R., Hickey, T.: EEG markers of stem learning, pp. 1–9 (2018). https://doi.org/10.1109/FIE.2018.8659031

  22. Schreyer, H.M., Gollisch, T.: Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli. Neuron 109(10), 1692–1706 (2021). https://doi.org/10.1016/j.neuron.2021.03.015

    Article  Google Scholar 

  23. Smith, S.J.M.: EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 76(suppl 2), ii2–ii7 (2005). https://doi.org/10.1136/jnnp.2005.069245. https://jnnp.bmj.com/content/76/suppl_2/ii2

  24. Sturm, I., Bach, S., Samek, W., Müller, K.R.: Interpretable deep neural networks for single-trial EEG classification (2016)

    Google Scholar 

  25. Sun, J., **e, J., Zhou, H.: EEG classification with transformer-based models. In: 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (2021)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need 30 (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

  27. Wairagkar, M., Hayashi, Y., Nasuto, S.J.: Dynamics of long-range temporal correlations in broadband EEG during different motor execution and imagery tasks. Front. Neurosci. 15 (2021). https://doi.org/10.3389/fnins.2021.660032. https://www.frontiersin.org/article/10.3389/fnins.2021.660032

  28. Willett, F.R., Avansino, D.T., Hochberg, L.R., Henderson, J.M., Shenoy, K.V.: High-performance brain-to-text communication via imagined handwriting. Nature 593, 249–254 (2021)

    Article  Google Scholar 

  29. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

  30. Yin, W., Schütze, H., **ang, B., Zhou, B.: ABCNN: attention-based convolutional neural network for modeling sentence pairs (2018)

    Google Scholar 

  31. Zhang, X., Yao, L., Wang, X., Monaghan, J., McAlpine, D., Zhang, Y.: A survey on deep learning-based non- invasive brain signals: recent advances and new frontiers. J. Neural Eng. 18, 031002 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yi, L., Qu, X. (2022). Attention-Based CNN Capturing EEG Recording’s Average Voltage and Local Change. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2022. Lecture Notes in Computer Science(), vol 13336. Springer, Cham. https://doi.org/10.1007/978-3-031-05643-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05643-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05642-0

  • Online ISBN: 978-3-031-05643-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation